Abstract
Phenylene- and terphenylene-bridged polysilsesquioxane networks are modeled using computer-aided structure elucidation and molecular-dynamics (MD) simulations. The models are matched with analytical results such as elemental analysis, solid-state 29Si NMR, and gas-sorption porosimetry. Models which are cross-linked in every direction in three-dimensional space do not contain pore volume and are rejected. Models which are cross-linked in only two dimensions fit well with all analytical data. In conclusion, the bridged polysilsesquioxane networks seem to be formed by an aggregation of two-dimensional structures covalently or hydrogen bonded together.
Original language | English (US) |
---|---|
Pages (from-to) | 334-346 |
Number of pages | 13 |
Journal | Computational Materials Science |
Volume | 3 |
Issue number | 3 |
DOIs | |
State | Published - Jan 1995 |
ASJC Scopus subject areas
- Computer Science(all)
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Physics and Astronomy(all)
- Computational Mathematics