TY - JOUR
T1 - Comprehensive volumetric confocal microscopy with adaptive focusing
AU - Kang, Dong Kyun
AU - Yoo, Hongki
AU - Jillella, Priyanka
AU - Bouma, Brett E.
AU - Tearney, Guillermo J.
PY - 2011
Y1 - 2011
N2 - Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett's esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular.
AB - Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett's esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular.
UR - http://www.scopus.com/inward/record.url?scp=80055025484&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80055025484&partnerID=8YFLogxK
U2 - 10.1364/BOE.2.001412
DO - 10.1364/BOE.2.001412
M3 - Article
C2 - 21698005
AN - SCOPUS:80055025484
SN - 2156-7085
VL - 2
SP - 1412
EP - 1422
JO - Biomedical Optics Express
JF - Biomedical Optics Express
IS - 6
ER -