TY - GEN
T1 - Comprehensive visual field test & diagnosis system in support of astronaut health and performance
AU - Fink, Wolfgang
AU - Clark, Jonathan B.
AU - Reisman, Garrett E.
AU - Tarbell, Mark A.
PY - 2013
Y1 - 2013
N2 - Long duration spaceflight, permanent human presence on the Moon, and future human missions to Mars will require autonomous medical care to address both expected and unexpected risks. An integrated non-invasive visual field test & diagnosis system is presented for the identification, characterization, and automated classification of visual field defects caused by the spaceflight environment. This system will support the onboard medical provider and astronauts on space missions with an innovative, non-invasive, accurate, sensitive, and fast visual field test. It includes a database for examination data, and a software package for automated visual field analysis and diagnosis. The system will be used to detect and diagnose conditions affecting the visual field, while in space and on Earth, permitting the timely application of therapeutic countermeasures before astronaut health or performance are impaired. State-of-the-art perimetry devices are bulky, thereby precluding application in a spaceflight setting. In contrast, the visual field test & diagnosis system requires only a touchscreen-equipped computer or touchpad device, which may already be in use for other purposes (i.e., no additional payload), and custom software. The system has application in routine astronaut assessment (Clinical Status Exam), pre-, in-, and post-flight monitoring, and astronaut selection. It is deployable in operational space environments, such as aboard the International Space Station or during future missions to or permanent presence on the Moon and Mars.
AB - Long duration spaceflight, permanent human presence on the Moon, and future human missions to Mars will require autonomous medical care to address both expected and unexpected risks. An integrated non-invasive visual field test & diagnosis system is presented for the identification, characterization, and automated classification of visual field defects caused by the spaceflight environment. This system will support the onboard medical provider and astronauts on space missions with an innovative, non-invasive, accurate, sensitive, and fast visual field test. It includes a database for examination data, and a software package for automated visual field analysis and diagnosis. The system will be used to detect and diagnose conditions affecting the visual field, while in space and on Earth, permitting the timely application of therapeutic countermeasures before astronaut health or performance are impaired. State-of-the-art perimetry devices are bulky, thereby precluding application in a spaceflight setting. In contrast, the visual field test & diagnosis system requires only a touchscreen-equipped computer or touchpad device, which may already be in use for other purposes (i.e., no additional payload), and custom software. The system has application in routine astronaut assessment (Clinical Status Exam), pre-, in-, and post-flight monitoring, and astronaut selection. It is deployable in operational space environments, such as aboard the International Space Station or during future missions to or permanent presence on the Moon and Mars.
UR - http://www.scopus.com/inward/record.url?scp=84878740324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878740324&partnerID=8YFLogxK
U2 - 10.1109/AERO.2013.6497367
DO - 10.1109/AERO.2013.6497367
M3 - Conference contribution
AN - SCOPUS:84878740324
SN - 9781467318112
T3 - IEEE Aerospace Conference Proceedings
BT - 2013 IEEE Aerospace Conference, AERO 2013
T2 - 2013 IEEE Aerospace Conference, AERO 2013
Y2 - 2 March 2013 through 9 March 2013
ER -