TY - JOUR
T1 - Compositional characteristics of garnets and pyroxenes in contact-metasomatic skarn deposits and their relationship with metallization
AU - Bin, Zhao
AU - Barton, M. D.
PY - 1988/9
Y1 - 1988/9
N2 - The compositions of more than 300 granets and pyroxenes from 14 contact-metasomatic calcic skarn deposits and calcic-magnesia skarn skarn deposits in China have been examined using electron microprobe technique. The compositions of garnets and pyroxenes from a wide variety of ore types represent ten major classes of calcic skarn deposits (Fe, Fe-Cu, Pb-Zn,W, Sn, Sn-Mo-Bi-W, W-Bi-Cu-Mo, Cu-Zn and W-Zn-Cu) and three major classes of calcic-magnesia skarn deposits (Fe-Cu, Mo, Pb-Zn). Garnets and pyroxenes show a wide range of variation in composition, but the majority of garnets are grossular-andradite solid solutions containing less than 15 mol% (spessartine + almandine + pyrope), whereas most pyroxenes are diopside-hedenbergite solid solutions containing less than 5 mol% johannesenile. Some pyroxenes from a Pb-Zn calcic-magnesia skarn deposit display an increase in Mn content. Only Sn-W calcic skarn deposits and Pb-Zn calcic-magnesia skarn deposits contain garnets with more than 15 mol% (spessartine + almandine + pyrope). Some relationships have been established between the compositions of garnets and pyroxenes and the metallization types of economically important metals in skarn deposits.
AB - The compositions of more than 300 granets and pyroxenes from 14 contact-metasomatic calcic skarn deposits and calcic-magnesia skarn skarn deposits in China have been examined using electron microprobe technique. The compositions of garnets and pyroxenes from a wide variety of ore types represent ten major classes of calcic skarn deposits (Fe, Fe-Cu, Pb-Zn,W, Sn, Sn-Mo-Bi-W, W-Bi-Cu-Mo, Cu-Zn and W-Zn-Cu) and three major classes of calcic-magnesia skarn deposits (Fe-Cu, Mo, Pb-Zn). Garnets and pyroxenes show a wide range of variation in composition, but the majority of garnets are grossular-andradite solid solutions containing less than 15 mol% (spessartine + almandine + pyrope), whereas most pyroxenes are diopside-hedenbergite solid solutions containing less than 5 mol% johannesenile. Some pyroxenes from a Pb-Zn calcic-magnesia skarn deposit display an increase in Mn content. Only Sn-W calcic skarn deposits and Pb-Zn calcic-magnesia skarn deposits contain garnets with more than 15 mol% (spessartine + almandine + pyrope). Some relationships have been established between the compositions of garnets and pyroxenes and the metallization types of economically important metals in skarn deposits.
UR - http://www.scopus.com/inward/record.url?scp=51649150847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51649150847&partnerID=8YFLogxK
U2 - 10.1007/BF02842337
DO - 10.1007/BF02842337
M3 - Article
AN - SCOPUS:51649150847
SN - 1000-9426
VL - 7
SP - 329
EP - 335
JO - Chinese Journal of Geochemistry
JF - Chinese Journal of Geochemistry
IS - 4
ER -