TY - JOUR
T1 - Comparison of the transcriptomes and proteomes of serum exosomes from marek’s disease virus-vaccinated and protected and lymphoma-bearing chickens
AU - Neerukonda, Sabari Nath
AU - Tavlarides-Hontz, Phaedra
AU - McCarthy, Fiona
AU - Pendarvis, Kenneth
AU - Parcells, Mark S.
N1 - Funding Information:
Author Contributions: Conceptualization, M.S.P. and S.N.N.; Methodology, S.N.N., P. T.-H., K. P. and F. M.; Software, S.N.N. and K.P.; Validation, S.N.N. and M.S.P.; Formal Analysis, S.N.N..; Investigation, S.N.N. and K. P.; Resources, M.S.P.; Data Curation, M.S.P.; Writing-Original; Draft Preparation, S.N.N. and M.S.P.; Writing-Review & Editing, M.S.P.; Visualization, S.N.N. and M.S.P.; Supervision, M.S.P. and F. M.; Project Administration, M.S.P.; Funding Acquisition, M.S.P.” Funding: This work was supported by a Seed Grant provided by the College of Agriculture and Natural Resources (CANR) of the University of Delaware awarded to MSP, and was supported by the Avian Biosciences Center of the University of Delaware.
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/2
Y1 - 2019/2
N2 - Marek’s disease virus (MDV) is the causative agent of Marek’s disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered in ovo or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear. Here we report the contents of serum exosomes to assess their possible roles as indicators of systemic immunity, and alternatively, tumor formation. We examined the RNA and protein content of serum exosomes from CVI988 (Rispens)-vaccinated and protected chickens (VEX), and unvaccinated tumor-bearing chickens (TEX), via deep-sequencing and mass spectrometry, respectively. Bioinformatic analyses of microRNAs (miRNAs) and predicted miRNA targets indicated a greater abundance of tumor suppressor miRNAs in VEX compared to TEX. Conversely, oncomiRs originating from cellular (miRs 106a-363) and MDV miRNA clusters were more abundant in TEX compared to VEX. Most notably, mRNAs mapping to the entire MDV genome were identified in VEX, while mRNAs mapping to the repeats flanking the unique long (IRL/TRL) were identified in TEX. These data suggest that long-term systemic vaccine-induced immune responses may be mediated at the level of VEX which transfer viral mRNAs to antigen presenting cells systemically. Proteomic analyses of these exosomes suggested potential biomarkers for VEX and TEX. These data provide important putative insight into MDV-mediated immune suppression and vaccine responses, as well as potential serum biomarkers for MD protection and susceptibility.
AB - Marek’s disease virus (MDV) is the causative agent of Marek’s disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered in ovo or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear. Here we report the contents of serum exosomes to assess their possible roles as indicators of systemic immunity, and alternatively, tumor formation. We examined the RNA and protein content of serum exosomes from CVI988 (Rispens)-vaccinated and protected chickens (VEX), and unvaccinated tumor-bearing chickens (TEX), via deep-sequencing and mass spectrometry, respectively. Bioinformatic analyses of microRNAs (miRNAs) and predicted miRNA targets indicated a greater abundance of tumor suppressor miRNAs in VEX compared to TEX. Conversely, oncomiRs originating from cellular (miRs 106a-363) and MDV miRNA clusters were more abundant in TEX compared to VEX. Most notably, mRNAs mapping to the entire MDV genome were identified in VEX, while mRNAs mapping to the repeats flanking the unique long (IRL/TRL) were identified in TEX. These data suggest that long-term systemic vaccine-induced immune responses may be mediated at the level of VEX which transfer viral mRNAs to antigen presenting cells systemically. Proteomic analyses of these exosomes suggested potential biomarkers for VEX and TEX. These data provide important putative insight into MDV-mediated immune suppression and vaccine responses, as well as potential serum biomarkers for MD protection and susceptibility.
KW - Acid labile subunit (IGFALS)
KW - COL22A1
KW - Cancer-associated exosomes
KW - Exosomes
KW - Insulin-like growth factor
KW - Lymphoma
KW - Marek’s disease
KW - Vanin-1
UR - http://www.scopus.com/inward/record.url?scp=85071879204&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071879204&partnerID=8YFLogxK
U2 - 10.3390/genes10020116
DO - 10.3390/genes10020116
M3 - Article
AN - SCOPUS:85071879204
SN - 2073-4425
VL - 10
JO - Genes
JF - Genes
IS - 2
M1 - 116
ER -