Abstract
The events occurring during phorbol ester mediated destruction of myofibrils in differentiated muscle cells were followed at the fluorescence and electron microscope levels using antibodies which bind troponin-T, a newly discovered 185 000 dalton M-line protein called myomesin and muscle type creatine kinase. The following series of events is proposed. Within one day of phorbol ester treatment, Z-bands and thin filaments, including troponin-T, are absent from many myofibrils resulting in the rapid loss of longitudinal and lateral alignment. A-bands become randomly oriented and clustered into ever smaller compartments within the rounding, myosac-like, multinucleated cells until after 3 days of treatment they too disappear. The M-line proteins are always present in existing A-bands. These results suggest that the Z-band and associated structures are responsible for the maintenance of alignment and the lateral register of myofibrils, whereas the M-line is responsible for the structural integrity of the A-band. When phorbol ester is removed, the cells revert to a myotube morphology and within 2 to 3 days are filled with myofibrils. A comparison of the appearance of troponin-T and the 185 000 dalton myomesin in the recovery period to their appearance during normal myofibrillogenesis reveals that these proteins are more temporally co-ordinated during myofibrillogenesis than in the phorbol ester experimental system.
Original language | English (US) |
---|---|
Pages (from-to) | 265-274 |
Number of pages | 10 |
Journal | European Journal of Cell Biology |
Volume | 33 |
Issue number | 2 |
State | Published - Mar 1984 |
ASJC Scopus subject areas
- Pathology and Forensic Medicine
- Histology
- Cell Biology