TY - JOUR
T1 - Comparative spectra of oxygen-rich versus carbon-rich circumstellar shells
T2 - VY canis majoris and IRC +10216 at 215-285 GHZ
AU - Tenenbaum, E. D.
AU - Dodd, J. L.
AU - Milam, S. N.
AU - Woolf, N. J.
AU - Ziurys, L. M.
PY - 2010/9/1
Y1 - 2010/9/1
N2 - Asensitive (1σ rms at 1 MHz resolution∼3 mK) 1mmspectral line survey (214.5-285.5 GHz) ofVYCanisMajoris (VY CMa) and IRC +10216 has been conducted to compare the chemistries of oxygen- and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope of the Arizona Radio Observatory with a new Atacama Large Millimeter Array type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules; and in IRC +10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO2 and SiS; in IRC +10216, C4H and SiC 2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO+. Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC +10216, producing CH2NH, for example. Although the molecular complexity of IRC +10216 is greater, VY CMa supports a unique "inorganic" chemistry leading to the oxides PO, AlO, and AlOH. Only diatomic and triatomic compounds were observed in VY CMa, while species with four or more atoms are common in IRC +10216, reflecting carbon's ability to form multiple strong bonds, unlike oxygen. In VY CMa, a new water maser (v2 = 2) has been found, as well as vibrationally excitedNaCl. Toward IRC +10216, vibrationally excited CCHwas detected for the first time.
AB - Asensitive (1σ rms at 1 MHz resolution∼3 mK) 1mmspectral line survey (214.5-285.5 GHz) ofVYCanisMajoris (VY CMa) and IRC +10216 has been conducted to compare the chemistries of oxygen- and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope of the Arizona Radio Observatory with a new Atacama Large Millimeter Array type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules; and in IRC +10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO2 and SiS; in IRC +10216, C4H and SiC 2 are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO+. Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC +10216, producing CH2NH, for example. Although the molecular complexity of IRC +10216 is greater, VY CMa supports a unique "inorganic" chemistry leading to the oxides PO, AlO, and AlOH. Only diatomic and triatomic compounds were observed in VY CMa, while species with four or more atoms are common in IRC +10216, reflecting carbon's ability to form multiple strong bonds, unlike oxygen. In VY CMa, a new water maser (v2 = 2) has been found, as well as vibrationally excitedNaCl. Toward IRC +10216, vibrationally excited CCHwas detected for the first time.
KW - Astrochemistry
KW - Circumstellar matter
KW - Stars: AGB and post-AGB
KW - Supergiants
UR - http://www.scopus.com/inward/record.url?scp=78649278856&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649278856&partnerID=8YFLogxK
U2 - 10.1088/2041-8205/720/1/L102
DO - 10.1088/2041-8205/720/1/L102
M3 - Article
AN - SCOPUS:78649278856
SN - 2041-8205
VL - 720
SP - L102-L107
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1 PART 2
ER -