TY - JOUR
T1 - Colon cancer cells acquire immune regulatory molecules from tumor-infiltrating lymphocytes by trogocytosis
AU - Shin, Jae Hun
AU - Jeong, Jaekwang
AU - Maher, Stephen E.
AU - Lee, Heon Woo
AU - Lim, Jaechul
AU - Bothwell, Alfred L.M.
PY - 2021/11/30
Y1 - 2021/11/30
N2 - Cancer cells can develop an immunosuppressive tumor microenvironment to control tumor-infiltrating lymphocytes. The underlying mechanisms still remain unclear. Here, we report that mouse and human colon cancer cells acquire lymphocyte membrane proteins including cellular markers such as CD4 and CD45. We observed cell populations harboring both a tumor-specific marker and CD4 in the tumor microenvironment. Sorted cells from these populations were capable of forming organoids, identifying them as cancer cells. Live imaging analysis revealed that lymphocyte membrane proteins were transferred to cancer cells via trogocytosis. As a result of the transfer in vivo, cancer cells also acquired immune regulatory surface proteins such as CTLA4 and Tim3, which suppress activation of immune cells [T. L. Walunas et al, Immunity 1, 405-413 (1994) and L. Monney et al., Nature 415, 536-541 (2002)]. RNA sequencing analysis of ex vivo-cocultured splenocytes with trogocytic cancer cells showed reductions in Th1 activation and natural killer cell signaling pathways compared with the nontrogocytic control. Cancer cell trogocytosis was confirmed in the patient-derived xenograft models of colorectal cancer and head and neck cancer. These findings suggest that cancer cells utilize membrane proteins expressed in lymphocytes, which in turn contribute to the development of the immunosuppressive tumor microenvironment.
AB - Cancer cells can develop an immunosuppressive tumor microenvironment to control tumor-infiltrating lymphocytes. The underlying mechanisms still remain unclear. Here, we report that mouse and human colon cancer cells acquire lymphocyte membrane proteins including cellular markers such as CD4 and CD45. We observed cell populations harboring both a tumor-specific marker and CD4 in the tumor microenvironment. Sorted cells from these populations were capable of forming organoids, identifying them as cancer cells. Live imaging analysis revealed that lymphocyte membrane proteins were transferred to cancer cells via trogocytosis. As a result of the transfer in vivo, cancer cells also acquired immune regulatory surface proteins such as CTLA4 and Tim3, which suppress activation of immune cells [T. L. Walunas et al, Immunity 1, 405-413 (1994) and L. Monney et al., Nature 415, 536-541 (2002)]. RNA sequencing analysis of ex vivo-cocultured splenocytes with trogocytic cancer cells showed reductions in Th1 activation and natural killer cell signaling pathways compared with the nontrogocytic control. Cancer cell trogocytosis was confirmed in the patient-derived xenograft models of colorectal cancer and head and neck cancer. These findings suggest that cancer cells utilize membrane proteins expressed in lymphocytes, which in turn contribute to the development of the immunosuppressive tumor microenvironment.
KW - cancer
KW - immune regulatory molecules
KW - trogocytosis
KW - tumor-infiltrating lymphocytes
UR - http://www.scopus.com/inward/record.url?scp=85122168111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122168111&partnerID=8YFLogxK
U2 - 10.1073/pnas.2110241118
DO - 10.1073/pnas.2110241118
M3 - Article
C2 - 34819374
AN - SCOPUS:85122168111
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 48
ER -