Climate Change Projections of Potential Evapotranspiration for the North American Monsoon Region

Eylon Shamir, Lourdes Mendoza Fierro, Sahar Mohsenzadeh Karimi, Norman Pelak, Emilie Tarouilly, Hsin I. Chang, Christopher L. Castro

Research output: Contribution to journalArticlepeer-review

Abstract

We assessed and quantified future projected changes in terrestrial evaporative demand by calculating Potential Evapotranspiration (PET) for the North American Monsoon region in the Southwestern U.S. and Mexico. The PET projections were calculated using the daily Penman–Monteith equation. The terrestrial meteorological variables needed for the equation (i.e., minimum and maximum daily temperature, specific humidity, wind speed, incoming shortwave radiation, and pressure) were obtained from the North American–CORDEX initiative. We used dynamically downscaled projections of three CMIP5 GCMs for RCP8.5 emission scenarios (i.e., HadGEM2-ES, MPI-ESM-LR, and GFDL-ESM2M), and each was dynamically downscaled to ~25 km by two RCMs (i.e., WRF and regCM4). All terrestrial annual PET projections showed a statistically significant increase when comparing the historical period (1986–2005) to future projections (2020–2039 and 2040–2059). The regional spatial average of the six GCM-RCM combinations projected an increase in the annual PET of about +4% and +8% for 2020–2039 and 2040–2059, respectively. The projected average 20-year annual changes over the study area range for the two projection periods were +1.4%–+8.7% and +3%–+14.2%, respectively. The projected annual PET increase trends are consistent across the entire region and for the six GCM-RCM combinations. Higher annual changes are projected in the northeast part of the region, while smaller changes are projected along the pacific coast. The main drivers for the increase are the projected warming and increase in the vapor pressure deficit. The projected changes in PET, which represent the changes in the atmospheric evaporative demand, are substantial and likely to impact vegetation and the hydrometeorological regime in the area. Quantitative assessments of the projected PET changes provided by this study should be considered in upcoming studies to develop resilience plans and adaptation strategies for mitigating the projected future changes.

Original languageEnglish (US)
Article number83
JournalHydrology
Volume11
Issue number6
DOIs
StatePublished - Jun 2024
Externally publishedYes

Keywords

  • climate change
  • NA-CORDEX
  • North American Monsoon
  • Penman–Monteith
  • potential evapotranspiration

ASJC Scopus subject areas

  • Oceanography
  • Water Science and Technology
  • Waste Management and Disposal
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Climate Change Projections of Potential Evapotranspiration for the North American Monsoon Region'. Together they form a unique fingerprint.

Cite this