CLEAR: The Morphological Evolution of Galaxies in the Green Valley

Vicente Estrada-Carpenter, Casey Papovich, Ivelina Momcheva, Gabriel Brammer, Raymond C. Simons, Nikko J. Cleri, Mauro Giavalisco, Jasleen Matharu, Jonathan R. Trump, Benjamin Weiner, Zhiyuan Ji

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Quiescent galaxies having more compact morphologies than star-forming galaxies has been a consistent result in the field of galaxy evolution. What is not clear is at what point this divergence happens, i.e., when do quiescent galaxies become compact, and how big of a role does the progenitor effect play in this result? Here we aim to model the morphological and star formation histories of high-redshift (0.8 < z < 1.65) massive galaxies ( log ( M / M ⊙ ) > 10.2) with stellar population fits using Hubble Space Telescope/WFC3 G102 and G141 grism spectra plus photometry from the CANDELS Lyα Emission at Reionization (CLEAR) survey, constraining the star formation histories for a sample of ∼400 massive galaxies using flexible star formation histories. We develop a novel approach to classifying galaxies by their star formation activity in a way that highlights the green valley population, by modeling the specific star formation rate distributions as a function of redshift and deriving the probability that a galaxy is quiescent (P Q ). Using PQ and our flexible star formation histories we outline the evolutionary paths of our galaxies in relation to stellar mass, Sérsic index, effective radius R eff, and stellar mass surface density. We find that the galaxies show no appreciable stellar mass growth after entering the green valley (a net decrease of 4%) while their stellar mass surface densities increase by ∼0.25 dex.

Original languageEnglish (US)
Article number115
JournalAstrophysical Journal
Volume951
Issue number2
DOIs
StatePublished - Jul 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'CLEAR: The Morphological Evolution of Galaxies in the Green Valley'. Together they form a unique fingerprint.

Cite this