TY - JOUR
T1 - Cisplatin-induced renal cell apoptosis
T2 - Caspase 3-dependent and -independent pathways
AU - Cummings, Brian S.
AU - Schnellmann, Rick G.
PY - 2002
Y1 - 2002
N2 - The chemotherapeutic cisplatin causes renal dysfunction and renal proximal tubular cell (RPTC) apoptosis. The goal of these studies was to examine the role of p53, caspase 3, 8, and 9, and mitochondria in the signaling of cisplatin-induced apoptosis. Cisplatin (50 μM) produced time-dependent apoptosis in RPTCs, causing cell shrinkage, a 50-fold increase in caspase 3 activity, a 4-fold increase in phosphatidylserine externalization, and 5- and 15-fold increases in chromatin condensation and DNA hypoploidy, respectively. Mitochondrial membrane potential and ATP levels did not change at any time during cisplatin exposure. Caspase 8 and 9 activities also did not increase during treatment. Cisplatin increased nuclear p53 expression 4 h after treatment, preceding both caspase 3 activation and chromatin condensation. Treatment with the p53 inhibitor α-2-(2-imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone (PFT) before cisplatin exposure inhibited p53 nuclear expression at 4, 8, and 12 h and inhibited phosphatidylserine externalization and caspase 3 activation at 12 h. Neither DEVD-fmk nor ZVAD-fmk inhibited cisplatin-induced p53 nuclear expression. Both DEVD-fmk and ZVAD-fmk completely inhibited caspase 3 activity but, like PFT, partially inhibited cisplatin-induced chromatin condensation, annexin V labeling, and DNA hypoploidy after 24 h. These data demonstrate that at least 50% of cisplatin-induced apoptosis in RPTC is mediated by p53 and that p53 activates caspase 3 independently of either caspase 9 or 8 or mitochondrial dysfunction. Furthermore, 50% of cisplatin-induced RPTC apoptosis is independent of p53 and caspases 3, 8, and 9.
AB - The chemotherapeutic cisplatin causes renal dysfunction and renal proximal tubular cell (RPTC) apoptosis. The goal of these studies was to examine the role of p53, caspase 3, 8, and 9, and mitochondria in the signaling of cisplatin-induced apoptosis. Cisplatin (50 μM) produced time-dependent apoptosis in RPTCs, causing cell shrinkage, a 50-fold increase in caspase 3 activity, a 4-fold increase in phosphatidylserine externalization, and 5- and 15-fold increases in chromatin condensation and DNA hypoploidy, respectively. Mitochondrial membrane potential and ATP levels did not change at any time during cisplatin exposure. Caspase 8 and 9 activities also did not increase during treatment. Cisplatin increased nuclear p53 expression 4 h after treatment, preceding both caspase 3 activation and chromatin condensation. Treatment with the p53 inhibitor α-2-(2-imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-tolylethanone (PFT) before cisplatin exposure inhibited p53 nuclear expression at 4, 8, and 12 h and inhibited phosphatidylserine externalization and caspase 3 activation at 12 h. Neither DEVD-fmk nor ZVAD-fmk inhibited cisplatin-induced p53 nuclear expression. Both DEVD-fmk and ZVAD-fmk completely inhibited caspase 3 activity but, like PFT, partially inhibited cisplatin-induced chromatin condensation, annexin V labeling, and DNA hypoploidy after 24 h. These data demonstrate that at least 50% of cisplatin-induced apoptosis in RPTC is mediated by p53 and that p53 activates caspase 3 independently of either caspase 9 or 8 or mitochondrial dysfunction. Furthermore, 50% of cisplatin-induced RPTC apoptosis is independent of p53 and caspases 3, 8, and 9.
UR - http://www.scopus.com/inward/record.url?scp=0036085726&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036085726&partnerID=8YFLogxK
U2 - 10.1124/jpet.302.1.8
DO - 10.1124/jpet.302.1.8
M3 - Article
C2 - 12065694
AN - SCOPUS:0036085726
SN - 0022-3565
VL - 302
SP - 8
EP - 17
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 1
ER -