Cis-regulatory variation modulates susceptibility to enteric infection in the Drosophila genetic reference panel

Michael V. Frochaux, Maroun Bou Sleiman, Vincent Gardeux, Riccardo Dainese, Brian Hollis, Maria Litovchenko, Virginie S. Braman, Tommaso Andreani, Dani Osman, Bart Deplancke

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Background: Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited. Results: To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila. We identify a large number of condition-specific, expression quantitative trait loci (local-eQTLs) with infection-specific ones located in regions enriched for FOX transcription factor motifs. By assessing the allelic imbalance in the transcriptomes of 19 F1 hybrid lines from a large round robin design, we independently attribute a robust cis-regulatory effect to only 10% of these detected local-eQTLs. However, additional analyses indicate that many local-eQTLs may act in trans instead. Comparison of the transcriptomes of DGRP lines that were either susceptible or resistant to Pseudomonas entomophila infection reveals nutcracker as the only differentially expressed gene. Interestingly, we find that nutcracker is linked to infection-specific eQTLs that correlate with its expression level and to enteric infection susceptibility. Further regulatory analysis reveals one particular eQTL that significantly decreases the binding affinity for the repressor Broad, driving differential allele-specific nutcracker expression. Conclusions: Our collective findings point to a large number of infection-specific cis- and trans-acting eQTLs in the DGRP, including one common non-coding variant that lowers enteric infection susceptibility.

Original languageEnglish (US)
Article number6
JournalGenome biology
Issue number1
StatePublished - Jan 17 2020

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Cell Biology


Dive into the research topics of 'Cis-regulatory variation modulates susceptibility to enteric infection in the Drosophila genetic reference panel'. Together they form a unique fingerprint.

Cite this