TY - JOUR
T1 - Circulating free heme induces cytokine storm and pulmonary hypertension through the MKK3/p38 axis
AU - Varghese, Mathews Valuparampil
AU - James, Joel
AU - Bharti, Dinesh
AU - Rischard, Franz
AU - Rafikova, Olga
AU - Rafikov, Ruslan
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024/10
Y1 - 2024/10
N2 - Hemolysis is associated with pulmonary hypertension (PH), but the direct contribution of circulating free heme to the PH pathogenesis remains unclear. Here, we show that the elevated levels of circulating free heme are sufficient to induce PH and inflammatory response in mice and confirm the critical role of mitogen-activated protein kinase kinase-3 (MKK3)-mediated pathway in free heme signaling. Following the continuous infusion of heme for 2 wk, wild-type (WT) but not MKK3 knockout (KO) mice develop PH, as evidenced by a significantly elevated right ventricular (RV) systolic pressure, RV hypertrophy, and pulmonary vascular remodeling. The MKK3/p38 axis, markedly activated by heme infusion in WTs, results in upregulated proliferative/cytokine signaling targets Akt, ERK1/2, and STAT3, which were abrogated in MKK3 KO mice. Moreover, the MKK3 KOs were protected against heme-mediated endothelial barrier dysfunction by restoring the tight junction protein zonula occludens-1 expression and diminishing the inflammatory cell infiltration in the lungs. Plasma cytokine multiplex analysis revealed a severe cytokine storm already 24 h after initiation of heme infusion, with a significant increase of 19 cytokines, including IL-1b, IL-2, IL-6, IL-9, and TNF-a, in WT animals and complete attenuation of cytokine production in MKK3 KO mice. Together, these findings reveal a causative role of circulating free heme in PH through activating inflammatory and proliferative responses. The central role of MKK3 in orchestrating the heme-mediated pathogenic response supports MKK3 as an attractive therapeutic target for PH and other lung inflammatory diseases linked to hemolytic anemia.
AB - Hemolysis is associated with pulmonary hypertension (PH), but the direct contribution of circulating free heme to the PH pathogenesis remains unclear. Here, we show that the elevated levels of circulating free heme are sufficient to induce PH and inflammatory response in mice and confirm the critical role of mitogen-activated protein kinase kinase-3 (MKK3)-mediated pathway in free heme signaling. Following the continuous infusion of heme for 2 wk, wild-type (WT) but not MKK3 knockout (KO) mice develop PH, as evidenced by a significantly elevated right ventricular (RV) systolic pressure, RV hypertrophy, and pulmonary vascular remodeling. The MKK3/p38 axis, markedly activated by heme infusion in WTs, results in upregulated proliferative/cytokine signaling targets Akt, ERK1/2, and STAT3, which were abrogated in MKK3 KO mice. Moreover, the MKK3 KOs were protected against heme-mediated endothelial barrier dysfunction by restoring the tight junction protein zonula occludens-1 expression and diminishing the inflammatory cell infiltration in the lungs. Plasma cytokine multiplex analysis revealed a severe cytokine storm already 24 h after initiation of heme infusion, with a significant increase of 19 cytokines, including IL-1b, IL-2, IL-6, IL-9, and TNF-a, in WT animals and complete attenuation of cytokine production in MKK3 KO mice. Together, these findings reveal a causative role of circulating free heme in PH through activating inflammatory and proliferative responses. The central role of MKK3 in orchestrating the heme-mediated pathogenic response supports MKK3 as an attractive therapeutic target for PH and other lung inflammatory diseases linked to hemolytic anemia.
KW - cytokine storm
KW - free heme
KW - p38 kinase
KW - pulmonary hypertension
KW - vascular remodeling
UR - http://www.scopus.com/inward/record.url?scp=85205741413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205741413&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00422.2022
DO - 10.1152/ajplung.00422.2022
M3 - Article
C2 - 39197168
AN - SCOPUS:85205741413
SN - 1040-0605
VL - 327
SP - L574-L586
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 4
ER -