TY - JOUR
T1 - Chronic hypoxia selectively enhances L- and T-type voltage-dependent Ca2+ channel activity in pulmonary artery by upregulating Cav1.2 and Cav3.2
AU - Wan, Jun
AU - Yamamura, Aya
AU - Zimnicka, Adriana M.
AU - Voiriot, Guillaume
AU - Smith, Kimberly A.
AU - Tang, Haiyang
AU - Ayon, Ramon J.
AU - Choudhury, Moumita S.R.
AU - Ko, Eun A.
AU - Wang, Jun
AU - Wang, Chen
AU - Makino, Ayako
AU - Yuan, Jason X.J.
PY - 2013/7/15
Y1 - 2013/7/15
N2 - Hypoxia-induced pulmonary hypertension (HPH) is characterized by sustained pulmonary vasoconstriction and vascular remodeling, both of which are mediated by pulmonary artery smooth muscle cell (PASMC) contraction and proliferation, respectively. An increase in cytosolic Ca2+ concentration ([Ca2+]cyt) is a major trigger for pulmonary vasoconstriction and an important stimulus for cell proliferation in PASMCs. Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) is an important pathway for the regulation of [Ca2+]cyt. The potential role for L- and T-type VDCC in the development of HPH is still unclear. Using a hypoxic-induced pulmonary hypertension mouse model, we undertook this study to identify if VDCC in pulmonary artery (PA) are functionally upregulated and determine which type of VDCC are altered in HPH. Mice subjected to chronic hypoxia developed pulmonary hypertension within 4 wk, and high-K+- and U-46619-induced contraction of PA was greater in chronic hypoxic mice than that in normoxic control mice. Additionally, we demonstrate that high-K+- and U-46619-induced Ca2+ influx in PASMC is significantly increased in the hypoxic group. The VDCC activator, Bay K8864, induced greater contraction of the PA of hypoxic mice than in that of normoxic mice in isometric force measurements. L-type and T-type VDCC blockers significantly attenuated absolute contraction of the PA in hypoxic mice. Chronic hypoxia did not increase high-K+- and U-46619-induced contraction of mesenteric artery (MA). Compared with MA, PA displayed higher expression of calcium channel voltage-dependent L-type α1C-subunit (Cav1.2) and T-type α1H-subunit (Cav3.2) upon exposure to chronic hypoxia. In conclusion, both L-type and T-type VDCC were functionally upregulated in PA, but not MA, in HPH mice, which could result from selectively increased expression of Cav1.2 and Cav3.2.
AB - Hypoxia-induced pulmonary hypertension (HPH) is characterized by sustained pulmonary vasoconstriction and vascular remodeling, both of which are mediated by pulmonary artery smooth muscle cell (PASMC) contraction and proliferation, respectively. An increase in cytosolic Ca2+ concentration ([Ca2+]cyt) is a major trigger for pulmonary vasoconstriction and an important stimulus for cell proliferation in PASMCs. Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) is an important pathway for the regulation of [Ca2+]cyt. The potential role for L- and T-type VDCC in the development of HPH is still unclear. Using a hypoxic-induced pulmonary hypertension mouse model, we undertook this study to identify if VDCC in pulmonary artery (PA) are functionally upregulated and determine which type of VDCC are altered in HPH. Mice subjected to chronic hypoxia developed pulmonary hypertension within 4 wk, and high-K+- and U-46619-induced contraction of PA was greater in chronic hypoxic mice than that in normoxic control mice. Additionally, we demonstrate that high-K+- and U-46619-induced Ca2+ influx in PASMC is significantly increased in the hypoxic group. The VDCC activator, Bay K8864, induced greater contraction of the PA of hypoxic mice than in that of normoxic mice in isometric force measurements. L-type and T-type VDCC blockers significantly attenuated absolute contraction of the PA in hypoxic mice. Chronic hypoxia did not increase high-K+- and U-46619-induced contraction of mesenteric artery (MA). Compared with MA, PA displayed higher expression of calcium channel voltage-dependent L-type α1C-subunit (Cav1.2) and T-type α1H-subunit (Cav3.2) upon exposure to chronic hypoxia. In conclusion, both L-type and T-type VDCC were functionally upregulated in PA, but not MA, in HPH mice, which could result from selectively increased expression of Cav1.2 and Cav3.2.
KW - Calcium channel voltage-dependent L-type α-subunit
KW - Calcium channel voltage-dependent T-type α-subunit
KW - Hypoxia
KW - Mouse
KW - Pulmonary artery
KW - Voltage-dependent calcium ion channel
UR - http://www.scopus.com/inward/record.url?scp=84880159429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880159429&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00313.2012
DO - 10.1152/ajplung.00313.2012
M3 - Article
C2 - 23686856
AN - SCOPUS:84880159429
SN - 1040-0605
VL - 305
SP - L154-L164
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 2
ER -