Chondrule formation during planetesimal accretion

Erik Asphaug, Martin Jutzi, Naor Movshovitz

Research output: Contribution to journalArticlepeer-review

122 Scopus citations


We explore the idea that most chondrules formed as a consequence of inefficient pairwise accretion, when molten or partly molten planetesimals ~30-100km diameter, similar in size, collided at velocities comparable to their two-body escape velocity ~100m/s. Although too slow to produce shocks or disrupt targets, these collisions were messy, especially after ~1Ma of dynamical excitation. In SPH simulations we find that the innermost portion of the projectile decelerates into the target, while the rest continues downrange in massive sheets. Unloading from pre-collision hydrostatic pressure P0~1-100bar into the nebula, the melt achieves equilibrium with the surface energy of chondrule-sized droplets. Cooling is regulated post collision by the expansion of the optically thick sheets. on a timescale of hours-days. Much of the sheet rains back down onto the target to be reprocessed; the rest is dispersed.

Original languageEnglish (US)
Pages (from-to)369-379
Number of pages11
JournalEarth and Planetary Science Letters
Issue number3-4
StatePublished - Aug 15 2011
Externally publishedYes


  • Chondrites
  • Chondrules
  • Collisions
  • Origins
  • Planetesimals

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'Chondrule formation during planetesimal accretion'. Together they form a unique fingerprint.

Cite this