TY - JOUR
T1 - Chimpanzee locomotor energetics and the origin of human bipedalism
AU - Sockol, Michael D.
AU - Raichlen, David A.
AU - Pontzer, Herman
PY - 2007/7/24
Y1 - 2007/7/24
N2 - Bipedal walking is evident in the earliest hominins [Zollikofer CPE, Ponce de Leon MS, Lieberman DE, Guy F, Pilbeam D, et al. (2005) Nature 434:755-759], but why our unique two-legged gait evolved remains unknown. Here, we analyze walking energetics and biomechanics for adult chimpanzees and humans to investigate the long-standing hypothesis that bipedalism reduced the energy cost of walking compared with our ape-like ancestors [Rodman PS, McHenry HM (1980) Am J Phys Anthropol 52:103-106]. Consistent with previous work on juvenile chimpanzees [Taylor CR, Rowntree VJ (1973) Science 179:186-187], we find that bipedal and quadrupedal walking costs are not significantly different in our sample of adult chimpanzees. However, a more detailed analysis reveals significant differences in bipedal and quadrupedal cost in most individuals, which are masked when subjects are examined as a group. Furthermore, human walking is ≈75% less costly than both quadrupedal and bipedal walking in chimpanzees. Variation in cost between bipedal and quadrupedal walking, as well as between chimpanzees and humans, is well explained by biomechanical differences in anatomy and gait, with the decreased cost of human walking attributable to our more extended hip and a longer hindlimb. Analyses of these features in early fossil hominins, coupled with analyses of bipedal walking in chimpanzees, indicate that bipedalism in early, ape-like hominins could indeed have been less costly than quadrupedal knucklewalking.
AB - Bipedal walking is evident in the earliest hominins [Zollikofer CPE, Ponce de Leon MS, Lieberman DE, Guy F, Pilbeam D, et al. (2005) Nature 434:755-759], but why our unique two-legged gait evolved remains unknown. Here, we analyze walking energetics and biomechanics for adult chimpanzees and humans to investigate the long-standing hypothesis that bipedalism reduced the energy cost of walking compared with our ape-like ancestors [Rodman PS, McHenry HM (1980) Am J Phys Anthropol 52:103-106]. Consistent with previous work on juvenile chimpanzees [Taylor CR, Rowntree VJ (1973) Science 179:186-187], we find that bipedal and quadrupedal walking costs are not significantly different in our sample of adult chimpanzees. However, a more detailed analysis reveals significant differences in bipedal and quadrupedal cost in most individuals, which are masked when subjects are examined as a group. Furthermore, human walking is ≈75% less costly than both quadrupedal and bipedal walking in chimpanzees. Variation in cost between bipedal and quadrupedal walking, as well as between chimpanzees and humans, is well explained by biomechanical differences in anatomy and gait, with the decreased cost of human walking attributable to our more extended hip and a longer hindlimb. Analyses of these features in early fossil hominins, coupled with analyses of bipedal walking in chimpanzees, indicate that bipedalism in early, ape-like hominins could indeed have been less costly than quadrupedal knucklewalking.
KW - Biomechanics
KW - Human evolution
KW - Inverse dynamics
KW - Limb length
KW - Locomotion
UR - http://www.scopus.com/inward/record.url?scp=34547619440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547619440&partnerID=8YFLogxK
U2 - 10.1073/pnas.0703267104
DO - 10.1073/pnas.0703267104
M3 - Article
C2 - 17636134
AN - SCOPUS:34547619440
SN - 0027-8424
VL - 104
SP - 12265
EP - 12269
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 30
ER -