Characterization of the damping coefficient in the continuous contact model

Mohammad Poursina, Parviz E. Nikravesh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This article presents an analytical formula to characterize the damping coefficient in a continuous force model of the direct central impact. The contact force element consists of a linear damper which is in a parallel connection to a spring with Hertz force-deformation characteristic. Unlike the existing models in which the separation condition is assumed to be at the time at which both zero penetration (deformation) and zero force occur, in this study, zero contact force is considered as the separation condition. To ensure that the continuous contact model obtains the desired restitution, an optimization process is performed to find the damping coefficient. The numerical investigations show that the damping coefficient can be analytically expressed as a function of system’s parameters such as the effective mass, penetration speed just before the impact, Hertz spring constant, and the coefficient of restitution.

Original languageEnglish (US)
Title of host publication15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859261
DOIs
StatePublished - 2019
EventASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019 - Anaheim, United States
Duration: Aug 18 2019Aug 21 2019

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Conference

ConferenceASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019
Country/TerritoryUnited States
CityAnaheim
Period8/18/198/21/19

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Characterization of the damping coefficient in the continuous contact model'. Together they form a unique fingerprint.

Cite this