TY - JOUR
T1 - Characterization of DNA damage induced by a natural product antitumor antibiotic leinamycin in human cancer cells
AU - Viswesh, Velliyur
AU - Gates, Kent
AU - Sun, Daekyu
PY - 2010/1/18
Y1 - 2010/1/18
N2 - Leinamycin is a structurally novel Streptomyces-derived natural product that displays very potent activity against various human cancer cell lines (IC50 values in the low nanomolar range). Previous in vitro biochemical studies have revealed that leinamycin alkylates DNA, generates apurinic (AP) sites and reactive oxygen species (ROS), and causes DNA strand breaks. However, it is not clear whether these events occur inside cells. In the present study, we have determined the endogenous amount of AP sites and DNA strand breaks in genomic DNA and the amount of oxidative stress in a human pancreatic carcinoma cell line, MiaPaCa, treated with leinamycin by utilizing the aldehyde-reactive probe assay, the comet assay, and fluorescent probes, respectively. We demonstrated that AP sites are formed rapidly following exposure to leinamycin, and the number of AP sites was increased up to seven-fold in a dose-dependent manner. However, only 25-50% of these sites remain 2 h after media containing drug molecules were aspirated and replaced with fresh media. We also observed leinamycin-induced ROS generation and a concomitant increase in apoptosis of MiaPaCa cells. Because both AP sites and ROS have the potential to generate strand breaks in cellular DNA, the comet assay was utilized to detect damage to nuclear DNA in leinamycin-treated MiaPaCa cell cultures. Both alkaline and neutral electrophoretic analysis revealed that leinamycin produces both single- and double-stranded DNA damage in drug-treated cells in a dose-dependent manner. Taken together, the results suggest that rapid conversion of leinamycin-guanine (N7) adducts into AP sites to produce DNA strand breaks, in synergy with leinamycin-derived ROS, accounts for the exceedingly potent biological activity of this natural product.
AB - Leinamycin is a structurally novel Streptomyces-derived natural product that displays very potent activity against various human cancer cell lines (IC50 values in the low nanomolar range). Previous in vitro biochemical studies have revealed that leinamycin alkylates DNA, generates apurinic (AP) sites and reactive oxygen species (ROS), and causes DNA strand breaks. However, it is not clear whether these events occur inside cells. In the present study, we have determined the endogenous amount of AP sites and DNA strand breaks in genomic DNA and the amount of oxidative stress in a human pancreatic carcinoma cell line, MiaPaCa, treated with leinamycin by utilizing the aldehyde-reactive probe assay, the comet assay, and fluorescent probes, respectively. We demonstrated that AP sites are formed rapidly following exposure to leinamycin, and the number of AP sites was increased up to seven-fold in a dose-dependent manner. However, only 25-50% of these sites remain 2 h after media containing drug molecules were aspirated and replaced with fresh media. We also observed leinamycin-induced ROS generation and a concomitant increase in apoptosis of MiaPaCa cells. Because both AP sites and ROS have the potential to generate strand breaks in cellular DNA, the comet assay was utilized to detect damage to nuclear DNA in leinamycin-treated MiaPaCa cell cultures. Both alkaline and neutral electrophoretic analysis revealed that leinamycin produces both single- and double-stranded DNA damage in drug-treated cells in a dose-dependent manner. Taken together, the results suggest that rapid conversion of leinamycin-guanine (N7) adducts into AP sites to produce DNA strand breaks, in synergy with leinamycin-derived ROS, accounts for the exceedingly potent biological activity of this natural product.
UR - http://www.scopus.com/inward/record.url?scp=75149196885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=75149196885&partnerID=8YFLogxK
U2 - 10.1021/tx900301r
DO - 10.1021/tx900301r
M3 - Article
C2 - 20017514
AN - SCOPUS:75149196885
SN - 0893-228X
VL - 23
SP - 99
EP - 107
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 1
ER -