TY - JOUR
T1 - Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese
AU - Mester, Tünde
AU - Field, Jim A.
PY - 1998/6/19
Y1 - 1998/6/19
N2 - A novel manganese-dependent peroxidase (MnP) isozyme produced in manganese-free cultures of Bjerkandera sp. strain BOS55 was purified and characterized. The production of the enzyme was greatly stimulated by the exogenous addition of various physiological organic acids such as glycolate, glyoxylate, and oxalate. The physical properties of the enzyme are similar to those of MnP isozymes from different white rot fungi (M(r) = 43,000, pI 3.88, and ε407(nm) = 123 mM-1 cm-1). The Bjerkandera MnP was efficient in the oxidation of Mn(II), as indicated by the kinetic constants (low K(m) of 51 μM and turnover number of 59 s-1). Furthermore, the isozyme was able to oxidize various substrates in the absence of manganese, such as 2,6- dimethoxyphenol, guaiacol, ABTS, 3-hydroxyanthranilic acid, and o- and p- anisidine. An interesting characteristic of the isozyme was its ability to oxidize nonphenolic substrates, veratryl alcohol and 1,4-dimethoxybenzene, without manganese addition. The affinity for veratryl alcohol (K(m) = 116 μM) and its turnover number (2.8 s-1) are comparable to those of lignin peroxidase (LIP) isozymes from other white rot fungi. Manganese at concentrations greater than 0.1 mM severely inhibited the oxidation of veratryl alcohol. The results suggest that this single isozyme is a hybrid between MnP and LiP found in other white rot fungi. The N-terminal amino acid sequence showed a very high homology to those of both MnP and LiP isozymes from Trametes versicolor.
AB - A novel manganese-dependent peroxidase (MnP) isozyme produced in manganese-free cultures of Bjerkandera sp. strain BOS55 was purified and characterized. The production of the enzyme was greatly stimulated by the exogenous addition of various physiological organic acids such as glycolate, glyoxylate, and oxalate. The physical properties of the enzyme are similar to those of MnP isozymes from different white rot fungi (M(r) = 43,000, pI 3.88, and ε407(nm) = 123 mM-1 cm-1). The Bjerkandera MnP was efficient in the oxidation of Mn(II), as indicated by the kinetic constants (low K(m) of 51 μM and turnover number of 59 s-1). Furthermore, the isozyme was able to oxidize various substrates in the absence of manganese, such as 2,6- dimethoxyphenol, guaiacol, ABTS, 3-hydroxyanthranilic acid, and o- and p- anisidine. An interesting characteristic of the isozyme was its ability to oxidize nonphenolic substrates, veratryl alcohol and 1,4-dimethoxybenzene, without manganese addition. The affinity for veratryl alcohol (K(m) = 116 μM) and its turnover number (2.8 s-1) are comparable to those of lignin peroxidase (LIP) isozymes from other white rot fungi. Manganese at concentrations greater than 0.1 mM severely inhibited the oxidation of veratryl alcohol. The results suggest that this single isozyme is a hybrid between MnP and LiP found in other white rot fungi. The N-terminal amino acid sequence showed a very high homology to those of both MnP and LiP isozymes from Trametes versicolor.
UR - http://www.scopus.com/inward/record.url?scp=0032546787&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032546787&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.25.15412
DO - 10.1074/jbc.273.25.15412
M3 - Article
C2 - 9624124
AN - SCOPUS:0032546787
SN - 0021-9258
VL - 273
SP - 15412
EP - 15417
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 25
ER -