TY - JOUR
T1 - Characterization and Coding of Behaviorally Significant Odor Mixtures
AU - Riffell, Jeffrey A.
AU - Lei, Hong
AU - Christensen, Thomas A.
AU - Hildebrand, John G.
N1 - Funding Information:
We thank C. Reisenman, L. Abrell, R. Alarcón, J. Martin, and A. Dacks for their help in this project. V. Pawlowski and P. Jansma provided technical assistance. This work was supported by National Institutes of Health (NIH) grant DC-02751 (J.G.H.), National Science Foundation grant IOS 01-082270 (JAR), an NIH postdoctoral training grant (2 K12 GM000708-06), and a seed grant from the University of Arizona's Center for Insect Science.
PY - 2009/2/24
Y1 - 2009/2/24
N2 - For animals to execute odor-driven behaviors, the olfactory system must process complex odor signals and maintain stimulus identity in the face of constantly changing odor intensities [1-5]. Surprisingly, how the olfactory system maintains identity of complex odors is unclear [6-10]. We took advantage of the plant-pollinator relationship between the Sacred Datura (Datura wrightii) and the moth Manduca sexta [11, 12] to determine how olfactory networks in this insect's brain represent odor mixtures. We combined gas chromatography and neural-ensemble recording in the moth's antennal lobe to examine population codes for the floral mixture and its fractionated components. Although the floral scent of D. wrightii comprises at least 60 compounds, only nine of those elicited robust neural responses. Behavioral experiments confirmed that these nine odorants mediate flower-foraging behaviors, but only as a mixture. Moreover, the mixture evoked equivalent foraging behaviors over a 1000-fold range in dilution, suggesting a singular percept across this concentration range. Furthermore, neural-ensemble recordings in the moth's antennal lobe revealed that reliable encoding of the floral mixture is organized through synchronized activity distributed across a population of glomerular coding units, and this timing mechanism may bind the features of a complex stimulus into a coherent odor percept.
AB - For animals to execute odor-driven behaviors, the olfactory system must process complex odor signals and maintain stimulus identity in the face of constantly changing odor intensities [1-5]. Surprisingly, how the olfactory system maintains identity of complex odors is unclear [6-10]. We took advantage of the plant-pollinator relationship between the Sacred Datura (Datura wrightii) and the moth Manduca sexta [11, 12] to determine how olfactory networks in this insect's brain represent odor mixtures. We combined gas chromatography and neural-ensemble recording in the moth's antennal lobe to examine population codes for the floral mixture and its fractionated components. Although the floral scent of D. wrightii comprises at least 60 compounds, only nine of those elicited robust neural responses. Behavioral experiments confirmed that these nine odorants mediate flower-foraging behaviors, but only as a mixture. Moreover, the mixture evoked equivalent foraging behaviors over a 1000-fold range in dilution, suggesting a singular percept across this concentration range. Furthermore, neural-ensemble recordings in the moth's antennal lobe revealed that reliable encoding of the floral mixture is organized through synchronized activity distributed across a population of glomerular coding units, and this timing mechanism may bind the features of a complex stimulus into a coherent odor percept.
KW - SYSNEURO
UR - http://www.scopus.com/inward/record.url?scp=60349101186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60349101186&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2009.01.041
DO - 10.1016/j.cub.2009.01.041
M3 - Article
C2 - 19230669
AN - SCOPUS:60349101186
SN - 0960-9822
VL - 19
SP - 335
EP - 340
JO - Current Biology
JF - Current Biology
IS - 4
ER -