Abstract
Amphiphilic, cationic Polymyxin B is shown to displace Ca2+ from 'gas dissected' cardiac sarcolemma in a dose-dependent, saturable fashion. The Ca2+ displacement is only partially reversible, 57% and 63%, in the presence of 1 mM or 10 mM Ca2+, respectively. Total Ca2+ displaced by a non-specific cationic probe, lanthanum (La3+), at maximal displacing concentration (1 mM) was 0.172 ± 0.02 nmol/μg membrane protein. At 0.1 mM, Polymyxin B displaced 42% of the total La3+-displaceable Ca2+ or 0.072 ± 0.01 nmol/μg protein. 5 mM Polymyxin displaced Ca2+ in amounts equal to those displaced by 1 mM La3+. Pretreatment of the membranes with neuraminidase (removal of sialic acid) and protease leads to a decrease in La3+-displaceable Ca2+ but to an increase in the fraction displaced by 0.1 mM Polymyxin from 42% to 54%. Phospholipase D (cabbage) treatment significantly increased the La3+-displaceable Ca2+ to 0.227 ± 0.02 nmol/μg protein (P < 0.05), a gain of 0.055 nmol. All of this phospholipid specific increment in bound Ca2+ was displaced by 0.1 mM Polymyxin B. The results suggest that Polymyxin B will be useful as a probe for phospholipid Ca2+-binding sites in natural membranes.
Original language | English (US) |
---|---|
Pages (from-to) | 44-52 |
Number of pages | 9 |
Journal | BBA - Biomembranes |
Volume | 729 |
Issue number | 1 |
DOIs | |
State | Published - Mar 23 1983 |
Keywords
- (Rat myocardial cell membrane)
- Ca binding site
- Ca displacement
- La
- Polymyxin B
ASJC Scopus subject areas
- Biophysics
- Biochemistry
- Cell Biology