TY - JOUR
T1 - Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak1-1 and A-498 cells
AU - Lock, Edward A.
AU - Reed, Celia J.
AU - Kinsey, Gilbert R.
AU - Schnellmann, Rick G.
N1 - Funding Information:
These studies were supported by GEO-Centers through the Department of Defense/Hollings Cancer Center Research Program under Subcontract no. 42153MK-GC-3532.
PY - 2007/1/5
Y1 - 2007/1/5
N2 - Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Caki-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Caki-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A2 inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Caki-1 renal cancer cells primarily through a caspase-dependent mechanism and that externalization of phosphatidylserine during apoptosis produced by staurosporine in the renal cancer cell line A-498 is independent of many of the common signaling pathways known to be involved in this process.
AB - Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Caki-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Caki-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A2 inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Caki-1 renal cancer cells primarily through a caspase-dependent mechanism and that externalization of phosphatidylserine during apoptosis produced by staurosporine in the renal cancer cell line A-498 is independent of many of the common signaling pathways known to be involved in this process.
KW - 5-Fluorouracil
KW - A-498 renal cancer cells
KW - Cak-1 renal cancer cells
KW - Caspase-dependent apoptosis
KW - Non-caspase-dependent apoptosis
KW - Phosphatidylserine externalization
KW - Staurosporine
UR - http://www.scopus.com/inward/record.url?scp=33845312653&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845312653&partnerID=8YFLogxK
U2 - 10.1016/j.tox.2006.10.003
DO - 10.1016/j.tox.2006.10.003
M3 - Article
C2 - 17097791
AN - SCOPUS:33845312653
SN - 0300-483X
VL - 229
SP - 79
EP - 90
JO - Toxicology
JF - Toxicology
IS - 1-2
ER -