TY - JOUR
T1 - Carpal Arch Changes in Response to Thenar Muscle Loading
AU - Zhang, Hui
AU - Loss, Jeremy
AU - Li, Zong Ming
N1 - Publisher Copyright:
© 2021 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - This study investigated the biomechanical effects of thenar muscles (abductor pollicis brevis (APB), superficial head of flexor pollicis brevis (sFPB), opponens pollicis (OPP)) on the transverse carpal ligament formed carpal arch under force application by individual or combined muscles (APB, sFPB, OPP, APB-sFPB, sFPB-OPP, APB-OPP, and APB-sFPB-OPP). In ten cadaveric hands, thenar muscles were loaded under 15% of their respective maximal force capacity, and ultrasound images of the cross section of the distal carpal tunnel were collected for morphometric analyses of the carpal arch. The carpal arch height and area were significantly dependent on the loading condition (p < 0.01), muscle combination (p < 0.05), and their interaction (p < 0.01). The changes to arch height and area were significantly dependent on the muscle combinations (p = 0.001 and p < 0.001, respectively). The arch height and area increased under the loading combinations of APB, OPP, APB-sFPB, APB-OPP, or APB-sFPB-OPP (p < 0.05), but not under the combinations of sFPB (p = 0.893) or sFPB-OPP (p = 0.338). The carpal arch change under the APB-sFPB-OPP or APB-OPP loading was greater than that under the loading of APB-sFPB (p < 0.001). This study demonstrated that thenar muscle forces exert biomechanical effects on the transverse carpal ligament to increase carpal arch height and area, and these increases were different for individual muscles and their combinations.
AB - This study investigated the biomechanical effects of thenar muscles (abductor pollicis brevis (APB), superficial head of flexor pollicis brevis (sFPB), opponens pollicis (OPP)) on the transverse carpal ligament formed carpal arch under force application by individual or combined muscles (APB, sFPB, OPP, APB-sFPB, sFPB-OPP, APB-OPP, and APB-sFPB-OPP). In ten cadaveric hands, thenar muscles were loaded under 15% of their respective maximal force capacity, and ultrasound images of the cross section of the distal carpal tunnel were collected for morphometric analyses of the carpal arch. The carpal arch height and area were significantly dependent on the loading condition (p < 0.01), muscle combination (p < 0.05), and their interaction (p < 0.01). The changes to arch height and area were significantly dependent on the muscle combinations (p = 0.001 and p < 0.001, respectively). The arch height and area increased under the loading combinations of APB, OPP, APB-sFPB, APB-OPP, or APB-sFPB-OPP (p < 0.05), but not under the combinations of sFPB (p = 0.893) or sFPB-OPP (p = 0.338). The carpal arch change under the APB-sFPB-OPP or APB-OPP loading was greater than that under the loading of APB-sFPB (p < 0.001). This study demonstrated that thenar muscle forces exert biomechanical effects on the transverse carpal ligament to increase carpal arch height and area, and these increases were different for individual muscles and their combinations.
KW - biomechanical interaction
KW - carpal arch
KW - thenar muscles
KW - transverse carpal ligament
KW - ultrasound imaging
UR - http://www.scopus.com/inward/record.url?scp=85108108965&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108108965&partnerID=8YFLogxK
U2 - 10.1115/1.4051046
DO - 10.1115/1.4051046
M3 - Article
C2 - 33938948
AN - SCOPUS:85108108965
SN - 0148-0731
VL - 143
JO - Journal of Biomechanical Engineering
JF - Journal of Biomechanical Engineering
IS - 10
M1 - 101003
ER -