TY - JOUR
T1 - Carnivorous mammals from the middle Eocene Washakie Formation, Wyoming, USA, and their diversity trajectory in a post-warming world
AU - Tomiya, Susumu
AU - Zack, Shawn P.
AU - Spaulding, Michelle
AU - Flynn, John J.
N1 - Funding Information:
We are grateful to staff of the Bureau of Land Management in the Rawlins and state offices for issuance of paleontological permits, assistance, and support over decades of work in the Washakie Basin. FMNH and AMNH field teams collecting in the Washakie Basin were supported by many people (see Turnbull, 1991, 2002; McCarroll et al., 1996b), and we remain especially grateful to the Eversole family for longstanding help and encouragement in our fieldwork. For assistance with curation of the Washakie fossil vertebrate collection at FMNH including digitization of locality data, we are indebted to: collections staff A. Stroup (FMNH); student interns P. Bezanis, K. Hodge, M. Juhn, D. Mitchell, A. Okamoto, and R.B. Sulser (University of Chicago), W. Buchman (University of Denver), L. Cranmer (Westtown High School, Pennsylvania), J. Driebergen (Southern Illinois University), C. Dubois (St. John’s Jesuit High School, Ohio), C. Hawley (New Trier High School, Illinois), E. Herner (Colorado State University), J. Jimenez (Loyola University Chicago), M. Karlin (Hampshire College), C. Kay (Oberlin College), M. Limbeck (Allegheny College), S. Ososky and H. Starr (Western Illinois University), F. Socki (Illinois Wesleyan University), A. Taylor (University of Birmingham); and citizen volunteers L. Coronelli, J. Gandolfi, K. Koeller, C. McGarrity, and N. Tomiya. W. Simpson, A. Stroup, and K. Angielczyk (FMNH) facilitated the present study by providing ST with curatorial advice and support, institutional knowledge, and encouragement. A. Shinya (FMNH) made a cast FMNH PM 70166 of CM 9420, with permission from A. Henrici and M. Lamanna (CM). Lori Grove (FMNH) assisted W. Turnbull in compilation of a unified map of Washakie Formation localities. Additionally, we thank: J. Galkin, A. Gishlick, J. Meng, and R. O’Leary (AMNH), W. Simpson, A. Stroup, and K. Angielczyk (FMNH), D. Miao, D. Burnham, and K. Christopher Beard (KUVP), K. Randall and T. Deméré (SDSNH), D. Brinkman (YPM), C. Mejia and P. Holroyd (UCMP), A. Millhouse and N. Pyenson (USNM), L. Vietti (UW), and R. Eng, M. Rivin, C. Sidor, and G. Wilson (UWBM) for access to specimens under their care and assistance in collections; L. Vietti, R. Haupt, and E. Wommack (University of Wyoming) for their hospitality during ST’s visit to UW Geological Museum; F. Solé (Royal Belgian Institute of Natural Sciences) for clarification on the character matrix data of Solé et al. (2014, 2016); G. Feinman and J. Seagard (FMNH) for access to document scanner used for digitization of locality map; N. Famoso (University of Oregon), A. Friscia (UCLA), B. Bai, C. Grohé, and Z. Tseng (AMNH), R. Dunn (Des Moines University), P.D. Polly (Indiana University), N. Egi (Kyoto University), and P. Holroyd for discussions; C. Merriman and C. Taylor (FMNH) for supporting internship and volunteer programs at FMNH; R.B. Sulser for measurements of AMNH FM 12155; B. Bai, S. Goldberg, Z. Tseng, and H. Wang (AMNH), M. Rivin and R. Eng (UWBM) and K. Angielczyk for access to microscope/macro photography equipment; and W. Simpson, N. Famoso, H. Wang, and J. Henderson (YPM) for furnishing ST and SPZ with photographs of FMNH PM 70166, UWBM 38976, AMNH FM 2305, YPM VP 011878, and YPM VP 013107. ST thanks J. Meachen (Des Moines University) for allowing him to continue this study. K.B. Townsend (Midwestern University), P. Murphey (San Diego Natural History Museum), J. Westgate (Lamar University), A. Friscia (UCLA), and L. Stroik (Grand Valley State University) organized a symposium at the 2016 annual meeting of the Society of Vertebrate Paleontology (‘Advances in Middle Eocene Paleoecology: Evolutionary and Ecological Dynamics in a Post-Greenhouse World’) that facilitated discussions for the present study; reviewers A. Friscia, P.D. Polly, and R. Dunn for helpful comments on an earlier version of this paper; and editors H.-D. Sues, C. Scott, C. Maples, J. Musha, B. Hunda, and J. Kastigar for editorial support. This study was funded in part by the US National Science Foundation (NSF) grants DEB-1011474 (ST) and DEB-1655795 (MS), an American Museum of Natural History Theodore Roosevelt Memorial Grant (ST) and the AMNH Division of Paleontology Frick Fund (JF), and a Vertebrate Paleontology Collections Study Grant from the University of Washington Burke Museum (ST). NSF Collections in Support of Biological Research program (DBI-1203530 to K. Angielczyk) supported collections improvement at FMNH that laid the foundation for the present study. This is UCMP Contribution no. 3003.
Publisher Copyright:
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. All rights reserved. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2021/3
Y1 - 2021/3
N2 - The middle Eocene Washakie Formation of Wyoming, USA, provides a rare window, within a single depositional basin, into the faunal transition that followed the early Eocene warming events. Based on extensive examination, we report a minimum of 27 species of carnivorous mammals from this formation, more than doubling the previous taxic count. Included in this revised list are a new species of carnivoraform, Neovulpavus mccarrolli n. sp., and up to ten other possibly new taxa. Our cladistic analysis of early Carnivoraformes incorporating new data clarified the array of middle Eocene taxa that are closely related to crown-group Carnivora. These anatomically relatively derived carnivoraforms collectively had an intercontinental distribution in North America and east Asia, exhibiting notable variations in body size and dental adaptation. This time period also saw parallel trends of increase in body size and dental sectoriality in distantly related lineages of carnivores spanning a wide range of body sizes. A new, model-based Bayesian analysis of diversity dynamics accounting for imperfect detection revealed a high probability of substantial loss of carnivore species between the late Bridgerian and early Uintan North American Land Mammal ‘Ages’, coinciding with the disappearance of formerly common mammals such as hyopsodontids and adapiform primates. Concomitant with this decline in carnivore diversity, the Washakie vertebrate fauna underwent significant disintegration, as measured by patterns of coordinated detection of taxa at the locality level. These observations are consistent with a major biomic transition in the region in response to climatically induced opening-up of forested habitats.
AB - The middle Eocene Washakie Formation of Wyoming, USA, provides a rare window, within a single depositional basin, into the faunal transition that followed the early Eocene warming events. Based on extensive examination, we report a minimum of 27 species of carnivorous mammals from this formation, more than doubling the previous taxic count. Included in this revised list are a new species of carnivoraform, Neovulpavus mccarrolli n. sp., and up to ten other possibly new taxa. Our cladistic analysis of early Carnivoraformes incorporating new data clarified the array of middle Eocene taxa that are closely related to crown-group Carnivora. These anatomically relatively derived carnivoraforms collectively had an intercontinental distribution in North America and east Asia, exhibiting notable variations in body size and dental adaptation. This time period also saw parallel trends of increase in body size and dental sectoriality in distantly related lineages of carnivores spanning a wide range of body sizes. A new, model-based Bayesian analysis of diversity dynamics accounting for imperfect detection revealed a high probability of substantial loss of carnivore species between the late Bridgerian and early Uintan North American Land Mammal ‘Ages’, coinciding with the disappearance of formerly common mammals such as hyopsodontids and adapiform primates. Concomitant with this decline in carnivore diversity, the Washakie vertebrate fauna underwent significant disintegration, as measured by patterns of coordinated detection of taxa at the locality level. These observations are consistent with a major biomic transition in the region in response to climatically induced opening-up of forested habitats.
UR - http://www.scopus.com/inward/record.url?scp=85103309826&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103309826&partnerID=8YFLogxK
U2 - 10.1017/jpa.2020.74
DO - 10.1017/jpa.2020.74
M3 - Article
AN - SCOPUS:85103309826
SN - 0022-3360
VL - 95
JO - Journal of Paleontology
JF - Journal of Paleontology
M1 - 82
ER -