Can ground-based telescopes detect the oxygen 1.27 μm absorption feature as a biomarker in exoplanets?

Hajime Kawahara, Taro Matsuo, Michihiro Takami, Yuka Fujii, Takayuki Kotani, Naoshi Murakami, Motohide Tamura, Olivier Guyon

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The oxygen absorption line imprinted in the scattered light from Earth-like planets has been considered the most promising metabolic biomarker for exolife. We examine the feasibility of the detection of the 1.27 μm oxygen band from habitable exoplanets, in particular, around late-type stars observed with a future instrument on a 30m class ground-based telescope. We analyzed the night airglow around 1.27 μm with the IRCS/echelle spectrometer on Subaru and found that the strong telluric emission from atmospheric oxygen molecules declines by an order of magnitude by midnight. By compiling nearby star catalogs combined with the sky background model, we estimate the detectability of the oxygen absorption band from an Earth twin, if it exists, around nearby stars. We find that the most dominant source of photon noise for the oxygen 1.27 μm band detection comes from the night airglow if the contribution of the stellar point-spread function (PSF) halo is suppressed enough to detect the planet. We conclude that the future detectors, for which the detection contrast is limited by photon noise, can detect the oxygen 1.27 μm absorption band of Earth twins for 50 candidates of the late-type star. This paper demonstrates the importance of deploying a small inner working angle as an efficient coronagraph and extreme adaptive optics on extremely large telescopes, and clearly shows that doing so will enable the study of potentially habitable planets.

Original languageEnglish (US)
Article number13
JournalAstrophysical Journal
Volume758
Issue number1
DOIs
StatePublished - Oct 10 2012

Keywords

  • Earth
  • astrobiology
  • scattering
  • techniques: spectroscopic

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Can ground-based telescopes detect the oxygen 1.27 μm absorption feature as a biomarker in exoplanets?'. Together they form a unique fingerprint.

Cite this