TY - JOUR
T1 - C-terminus of heat shock protein 70-interacting protein-dependent GTP cyclohydrolase I degradation in lambs with increased pulmonary blood flow
AU - Sun, Xutong
AU - Fratz, Sohrab
AU - Sharma, Shruti
AU - Hou, Yali
AU - Rafikov, Ruslan
AU - Kumar, Sanjiv
AU - Rehmani, Imran
AU - Tian, Jing
AU - Smith, Anita
AU - Schreiber, Christian
AU - Reiser, Judith
AU - Naumann, Susanne
AU - Haag, Sebastian
AU - Hess, John
AU - Catravas, John D.
AU - Patterson, Cam
AU - Fineman, Jeffery R.
AU - Black, Stephen M.
PY - 2011/7/1
Y1 - 2011/7/1
N2 - We showed that nitric oxide (NO) signaling is decreased in the pulmonary vasculature before the development of endothelial dysfunction in a lamb model of congenital heart disease and increased pulmonary blood flow (Shunt). The elucidation of the molecular mechanism by which this occurs was the purpose of this study. Here, we demonstrate that concentrations of the endogenous NO synthase (NOS) inhibitor, asymmetric dimethylarginine (ADMA), are elevated, whereas the NOS cofactor tetrahydrobiopterin (BH4) is decreased in Shunt lambs. Our previous studies demonstrated that ADMA decreases heat shock protein-90 (Hsp90) chaperone activity, whereas other studies suggest that guanosine-5′-triphosphate cyclohydrolase 1 (GCH1), the rate-limitingenzyme in the generation of BH4, may be a client protein for Hsp90. Thus, we determined whether increases in ADMA could alter GCH1 protein and activity. Our data demonstrate that ADMA decreased GCH1 protein, but not mRNA concentrations, in pulmonary arterial endothelial cells (PAECs) because of the ubiquitination and proteasome-dependent degradation of GCH1. We also found that Hsp90-GCH1 interactions were reduced, whereas the association of GCH1 with Hsp70 and the C-terminus of Hsp70-interacting protein (CHIP) increased in ADMA-exposed PAECs. The overexpression of CHIP potentiated, whereas a CHIP U-box domain mutant attenuated, ADMA-induced GCH1 degradation and reductions in cellular BH4 concentrations.Wealso found in vivo that Hsp90/GCH1 interactions are decreased, whereas GCH1-Hsp70 and GCH1-CHIP interactions and GCH1 ubiquitination are increased. Finally, we found that supplementation with L-arginine restored Hsp90-GCH1 interactions and increased both BH4 and NOx concentrations in Shunt lambs. In conclusion, increased concentrations of ADMA can indirectly alter NO signaling through decreased cellular BH4 concentrations, secondary to the disruption of Hsp90-GCH1 interactions and the CHIP-dependent proteasomal degradation of GCH1.
AB - We showed that nitric oxide (NO) signaling is decreased in the pulmonary vasculature before the development of endothelial dysfunction in a lamb model of congenital heart disease and increased pulmonary blood flow (Shunt). The elucidation of the molecular mechanism by which this occurs was the purpose of this study. Here, we demonstrate that concentrations of the endogenous NO synthase (NOS) inhibitor, asymmetric dimethylarginine (ADMA), are elevated, whereas the NOS cofactor tetrahydrobiopterin (BH4) is decreased in Shunt lambs. Our previous studies demonstrated that ADMA decreases heat shock protein-90 (Hsp90) chaperone activity, whereas other studies suggest that guanosine-5′-triphosphate cyclohydrolase 1 (GCH1), the rate-limitingenzyme in the generation of BH4, may be a client protein for Hsp90. Thus, we determined whether increases in ADMA could alter GCH1 protein and activity. Our data demonstrate that ADMA decreased GCH1 protein, but not mRNA concentrations, in pulmonary arterial endothelial cells (PAECs) because of the ubiquitination and proteasome-dependent degradation of GCH1. We also found that Hsp90-GCH1 interactions were reduced, whereas the association of GCH1 with Hsp70 and the C-terminus of Hsp70-interacting protein (CHIP) increased in ADMA-exposed PAECs. The overexpression of CHIP potentiated, whereas a CHIP U-box domain mutant attenuated, ADMA-induced GCH1 degradation and reductions in cellular BH4 concentrations.Wealso found in vivo that Hsp90/GCH1 interactions are decreased, whereas GCH1-Hsp70 and GCH1-CHIP interactions and GCH1 ubiquitination are increased. Finally, we found that supplementation with L-arginine restored Hsp90-GCH1 interactions and increased both BH4 and NOx concentrations in Shunt lambs. In conclusion, increased concentrations of ADMA can indirectly alter NO signaling through decreased cellular BH4 concentrations, secondary to the disruption of Hsp90-GCH1 interactions and the CHIP-dependent proteasomal degradation of GCH1.
KW - Hsp70
KW - Hsp90
KW - Mitochondrial dysfunction
KW - Proteasome
KW - Ubiquitination
UR - http://www.scopus.com/inward/record.url?scp=80051573596&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051573596&partnerID=8YFLogxK
U2 - 10.1165/rcmb.2009-0467OC
DO - 10.1165/rcmb.2009-0467OC
M3 - Article
C2 - 20870896
AN - SCOPUS:80051573596
SN - 1044-1549
VL - 45
SP - 163
EP - 171
JO - American journal of respiratory cell and molecular biology
JF - American journal of respiratory cell and molecular biology
IS - 1
ER -