TY - JOUR
T1 - BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize
AU - Wang, Hongliang
AU - Guo, Siyi
AU - Qiao, Xin
AU - Guo, Jianfei
AU - Li, Zuliang
AU - Zhou, Yusen
AU - Bai, Shenglong
AU - Gao, Zhiyong
AU - Wang, Daojie
AU - Wang, Pengcheng
AU - Galbraith, David W.
AU - Song, Chun Peng
N1 - Funding Information:
This work was supported by Key Project of Natural Science Foundation of China (31430061, U1604233) and the 111 project of China (D16014). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.*%blankline%*
Publisher Copyright:
© Copyright: 2019 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019
Y1 - 2019
N2 - Intercellular communication in adjacent cell layers determines cell fate and polarity, thus orchestrating tissue specification and differentiation. Here we use the maize stomatal apparatus as a model to investigate cell fate determination. Mutations in ZmBZU2 (bizui2, bzu2) confer a complete absence of subsidiary cells (SCs) and normal guard cells (GCs), leading to failure of formation of mature stomatal complexes. Nuclear polarization and actin accumulation at the interface between subsidiary mother cells (SMCs) and guard mother cells (GMCs), an essential pre-requisite for asymmetric cell division, did not occur in Zmbzu2 mutants. ZmBZU2 encodes a basic helix-loop-helix (bHLH) transcription factor, which is an ortholog of AtMUTE in Arabidopsis (BZU2/ZmMUTE). We found that a number of genes implicated in stomatal development are transcriptionally regulated by BZU2/ZmMUTE. In particular, BZU2/ZmMUTE directly binds to the promoters of PAN1 and PAN2, two early regulators of protodermal cell fate and SMC polarization, consistent with the low levels of transcription of these genes observed in bzu2-1 mutants. BZU2/ZmMUTE has the cell-tocell mobility characteristic similar to that of BdMUTE in Brachypodium distachyon. Unexpectedly, BZU2/ZmMUTE is expressed in GMC from the asymmetric division stage to the GMC division stage, and especially in the SMC establishment stage. Taken together, these data imply that BZU2/ZmMUTE is required for early events in SMC polarization and differentiation as well as for the last symmetrical division of GMCs to produce the two GCs, and is a master determinant of the cell fate of its neighbors through cell-to-cell communication.
AB - Intercellular communication in adjacent cell layers determines cell fate and polarity, thus orchestrating tissue specification and differentiation. Here we use the maize stomatal apparatus as a model to investigate cell fate determination. Mutations in ZmBZU2 (bizui2, bzu2) confer a complete absence of subsidiary cells (SCs) and normal guard cells (GCs), leading to failure of formation of mature stomatal complexes. Nuclear polarization and actin accumulation at the interface between subsidiary mother cells (SMCs) and guard mother cells (GMCs), an essential pre-requisite for asymmetric cell division, did not occur in Zmbzu2 mutants. ZmBZU2 encodes a basic helix-loop-helix (bHLH) transcription factor, which is an ortholog of AtMUTE in Arabidopsis (BZU2/ZmMUTE). We found that a number of genes implicated in stomatal development are transcriptionally regulated by BZU2/ZmMUTE. In particular, BZU2/ZmMUTE directly binds to the promoters of PAN1 and PAN2, two early regulators of protodermal cell fate and SMC polarization, consistent with the low levels of transcription of these genes observed in bzu2-1 mutants. BZU2/ZmMUTE has the cell-tocell mobility characteristic similar to that of BdMUTE in Brachypodium distachyon. Unexpectedly, BZU2/ZmMUTE is expressed in GMC from the asymmetric division stage to the GMC division stage, and especially in the SMC establishment stage. Taken together, these data imply that BZU2/ZmMUTE is required for early events in SMC polarization and differentiation as well as for the last symmetrical division of GMCs to produce the two GCs, and is a master determinant of the cell fate of its neighbors through cell-to-cell communication.
UR - http://www.scopus.com/inward/record.url?scp=85072134020&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072134020&partnerID=8YFLogxK
U2 - 10.1371/journal.pgen.1008377
DO - 10.1371/journal.pgen.1008377
M3 - Article
C2 - 31465456
AN - SCOPUS:85072134020
SN - 1553-7390
VL - 15
JO - PLoS genetics
JF - PLoS genetics
IS - 8
M1 - e1008377
ER -