TY - JOUR
T1 - Building the First Galaxies—Chapter 2. Starbursts Dominate the Star Formation Histories of 6 < z < 12 Galaxies
AU - Dressler, Alan
AU - Rieke, Marcia
AU - Eisenstein, Daniel
AU - Stark, Daniel P.
AU - Burns, Chris
AU - Bhatawdekar, Rachana
AU - Bonaventura, Nina
AU - Boyett, Kristan
AU - Bunker, Andrew J.
AU - Carniani, Stefano
AU - Charlot, Stephane
AU - Hausen, Ryan
AU - Misselt, Karl
AU - Tacchella, Sandro
AU - Willmer, Christopher
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - We use SEDz*—a code designed to chart the star formation histories (SFHs) of 6 < z < 12 galaxies—to analyze the spectral energy distributions (SEDs) of 894 galaxies with deep JWST/NIRCam imaging by JADES in the GOODS-S field. We show how SEDz* matches observed SEDs using stellar-population templates, graphing the contribution of each epoch by epoch to confirm the robustness of the technique. Very good SED fits for most SFHs demonstrate the compatibility of the templates with stars in the first galaxies—as expected, because their light is primarily from main-sequence A stars, free of post-main-sequence complexity, and insensitive to heavy-element compositions. We confirm earlier results from Dressler et al. (1) There are four types of SFHs: SFH1, burst; SFH2, stochastic; SFH3, “contiguous” (three epochs), and SFH4, “continuous” (four to six epochs). (2) Starbursts—both single and multiple—are predominant (∼70%) in this critical period of cosmic history, although longer SFHs (0.5-1.0 Gyr) contribute one-third of the accumulated stellar mass. These 894 SFHs contribute 1011.14, 1011.09, 1011.00, and 1010.60 M ⊙ for SFH1-4, respectively, adding up to ∼4 × 1011 M ⊙ by z = 6 for this field. We suggest that the absence of rising SFHs could be explained as an intense dust-enshrouded phase of star formation lasting tens of Myr that preceded each of the SFHs we measure. We find no strong dependencies of SFH type with the large-scale environment; however, the discovery of a compact group of 30 galaxies, 11 of which had first star formation at z = 11-12, suggests that long SFHs could dominate in rare, dense environments.
AB - We use SEDz*—a code designed to chart the star formation histories (SFHs) of 6 < z < 12 galaxies—to analyze the spectral energy distributions (SEDs) of 894 galaxies with deep JWST/NIRCam imaging by JADES in the GOODS-S field. We show how SEDz* matches observed SEDs using stellar-population templates, graphing the contribution of each epoch by epoch to confirm the robustness of the technique. Very good SED fits for most SFHs demonstrate the compatibility of the templates with stars in the first galaxies—as expected, because their light is primarily from main-sequence A stars, free of post-main-sequence complexity, and insensitive to heavy-element compositions. We confirm earlier results from Dressler et al. (1) There are four types of SFHs: SFH1, burst; SFH2, stochastic; SFH3, “contiguous” (three epochs), and SFH4, “continuous” (four to six epochs). (2) Starbursts—both single and multiple—are predominant (∼70%) in this critical period of cosmic history, although longer SFHs (0.5-1.0 Gyr) contribute one-third of the accumulated stellar mass. These 894 SFHs contribute 1011.14, 1011.09, 1011.00, and 1010.60 M ⊙ for SFH1-4, respectively, adding up to ∼4 × 1011 M ⊙ by z = 6 for this field. We suggest that the absence of rising SFHs could be explained as an intense dust-enshrouded phase of star formation lasting tens of Myr that preceded each of the SFHs we measure. We find no strong dependencies of SFH type with the large-scale environment; however, the discovery of a compact group of 30 galaxies, 11 of which had first star formation at z = 11-12, suggests that long SFHs could dominate in rare, dense environments.
UR - http://www.scopus.com/inward/record.url?scp=85188908289&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85188908289&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ad1923
DO - 10.3847/1538-4357/ad1923
M3 - Article
AN - SCOPUS:85188908289
SN - 0004-637X
VL - 964
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 150
ER -