TY - JOUR
T1 - Bromobenzene epoxidation leading to binding on macromolecular protein sites
AU - Lau, S. S.
AU - Zannoni, V. G.
PY - 1981
Y1 - 1981
N2 - Bromobenzene is metabolized via the hepatic mixed-function oxygenase system to reactive intermediates; i.e., 2,3- and 3,4-bromobenzene epoxides. These metabolites presumably bind to tissue macromolecules evoking cytotoxicity. However, the specific sites of macromolecular proteins are not known and this was investigated using microsomal protein and hemoglobin. The results indicate that 2,3- and 3,4-epoxide bind to macromolecules at different rates. The 3,4-epoxide is more reactive, binding covalently to microsomal protein at the site of its synthesis, whereas bromobenzene 2,3-epoxide is more stable, leaving the microsomal protein compartment and binding covalently to soluble protein, i.e., the hemoglobin β chain. Structural analysis with fingerprint mapping of the hemoglobin β chain after pretreatment with cysteine and histidine blocking agents such as p-nitrophenacyl bromide, 2-bromoethylamine hydrobromide and diethylprocarbonate indicated that the 2,3-epoxide preferentially binds to the cysteinyl residue, whereas the 3,4-epoxide binds to the histidinyl residue. This difference in binding of the 2,3- and 3,4-bromobenzene epoxides may be an important factor in determining the degree of their cytotoxicity.
AB - Bromobenzene is metabolized via the hepatic mixed-function oxygenase system to reactive intermediates; i.e., 2,3- and 3,4-bromobenzene epoxides. These metabolites presumably bind to tissue macromolecules evoking cytotoxicity. However, the specific sites of macromolecular proteins are not known and this was investigated using microsomal protein and hemoglobin. The results indicate that 2,3- and 3,4-epoxide bind to macromolecules at different rates. The 3,4-epoxide is more reactive, binding covalently to microsomal protein at the site of its synthesis, whereas bromobenzene 2,3-epoxide is more stable, leaving the microsomal protein compartment and binding covalently to soluble protein, i.e., the hemoglobin β chain. Structural analysis with fingerprint mapping of the hemoglobin β chain after pretreatment with cysteine and histidine blocking agents such as p-nitrophenacyl bromide, 2-bromoethylamine hydrobromide and diethylprocarbonate indicated that the 2,3-epoxide preferentially binds to the cysteinyl residue, whereas the 3,4-epoxide binds to the histidinyl residue. This difference in binding of the 2,3- and 3,4-bromobenzene epoxides may be an important factor in determining the degree of their cytotoxicity.
UR - http://www.scopus.com/inward/record.url?scp=0019778655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0019778655&partnerID=8YFLogxK
M3 - Article
C2 - 7288634
AN - SCOPUS:0019778655
SN - 0022-3565
VL - 219
SP - 563
EP - 572
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 2
ER -