TY - JOUR
T1 - Breed differences in dog cognition associated with brain-expressed genes and neurological functions
AU - Gnanadesikan, Gitanjali E.
AU - Hare, Brian
AU - Snyder-Mackler, Noah
AU - Call, Josep
AU - Kaminski, Juliane
AU - Miklósi, Ádám
AU - MacLean, Evan L.
N1 - Publisher Copyright:
© The Author(s) 2020.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Given their remarkable phenotypic diversity, dogs present a unique opportunity for investigating the genetic bases of cognitive and behavioral traits. Our previous work demonstrated that genetic relatedness among breeds accounts for a substantial portion of variation in dog cognition. Here, we investigated the genetic architecture of breed differences in cognition, seeking to identify genes that contribute to variation in cognitive phenotypes. To do so, we combined cognitive data from the citizen science project Dognition.com with published breed-average genetic polymorphism data, resulting in a dataset of 1654 individuals with cognitive phenotypes representing 49 breeds. We conducted a breedaverage genome-wide association study to identify specific polymorphisms associated with breed differences in inhibitory control, communication, memory, and physical reasoning. We found five single nucleotide polymorphisms (SNPs) that reached genome-wide significance after Bonferroni correction, located in EML1, OR52E2, HS3ST5, a U6 spliceosomal RNA, and a long noncoding RNA. When we combined results across multiple SNPs within the same gene, we identified 188 genes implicated in breed differences in cognition. This gene set included more genes than expected by chance that were (1) differentially expressed in brain tissue and (2) involved in nervous system functions including peripheral nervous system development, Wnt signaling, presynapse assembly, and synaptic vesicle exocytosis. These results advance our understanding of the genetic underpinnings of complex cognitive phenotypes and identify specific genetic variants for further research.
AB - Given their remarkable phenotypic diversity, dogs present a unique opportunity for investigating the genetic bases of cognitive and behavioral traits. Our previous work demonstrated that genetic relatedness among breeds accounts for a substantial portion of variation in dog cognition. Here, we investigated the genetic architecture of breed differences in cognition, seeking to identify genes that contribute to variation in cognitive phenotypes. To do so, we combined cognitive data from the citizen science project Dognition.com with published breed-average genetic polymorphism data, resulting in a dataset of 1654 individuals with cognitive phenotypes representing 49 breeds. We conducted a breedaverage genome-wide association study to identify specific polymorphisms associated with breed differences in inhibitory control, communication, memory, and physical reasoning. We found five single nucleotide polymorphisms (SNPs) that reached genome-wide significance after Bonferroni correction, located in EML1, OR52E2, HS3ST5, a U6 spliceosomal RNA, and a long noncoding RNA. When we combined results across multiple SNPs within the same gene, we identified 188 genes implicated in breed differences in cognition. This gene set included more genes than expected by chance that were (1) differentially expressed in brain tissue and (2) involved in nervous system functions including peripheral nervous system development, Wnt signaling, presynapse assembly, and synaptic vesicle exocytosis. These results advance our understanding of the genetic underpinnings of complex cognitive phenotypes and identify specific genetic variants for further research.
UR - http://www.scopus.com/inward/record.url?scp=85095666242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095666242&partnerID=8YFLogxK
U2 - 10.1093/icb/icaa112
DO - 10.1093/icb/icaa112
M3 - Article
C2 - 32726413
AN - SCOPUS:85095666242
SN - 1540-7063
VL - 60
SP - 976
EP - 990
JO - Integrative and comparative biology
JF - Integrative and comparative biology
IS - 4
ER -