TY - JOUR
T1 - Biosynthesis of gold and silver nanoparticles using Parkinsonia Florida leaf extract and antimicrobial activity of silver nanoparticles
AU - López-Millán, Alejandra
AU - Del Toro-Sánchez, Carmen Lizette
AU - Ramos-Enríquez, José Rogelio
AU - Carrillo-Torres, Roberto Carlos
AU - Zavala-Rivera, Paul
AU - Esquivel, Reynaldo
AU - Álvarez-Ramos, Enrique
AU - Moreno-Corral, Ramón
AU - Guzmán-Zamudio, Roberto
AU - Lucero-Acunã, Armando
N1 - Publisher Copyright:
© 2019 IOP Publishing Ltd.
PY - 2019/7/5
Y1 - 2019/7/5
N2 - In this work, the biosynthesis of gold and silver nanoparticles from a leaf extract of Parkinsonia florida (P. florida) is reported. The P. florida leaf extract was analyzed by a phytochemical screening, by measuring the DPPH radical scavenging activity, and by Fourier-transform infrared spectroscopy (FT-IR). The phytochemical screening results indicated that biomolecules like carbohydrates, phenols, proteins, aminoacids, saponins, and flavonoids present in P. florida leaf extract might have participated in the chemical reduction of the metallic salts and further colloidal stabilization. The FT-IR results from leaf extract functional groups support the role of surface modification with the presence of residues of phenols, proteins, aminoacids, saponins, and flavonoids. The formation of metallic nanoparticles was confirmed by optical absorption spectroscopy with characteristic absorption bands at 550 nm and 430 nm, for gold and silver nanoparticles, respectively. Zeta potential for gold nanoparticles presents negative values in the range of-10 ± 1 to-16 ± 1 mV, depending on the amount of leaf extract used during the synthesis reaction. Similarly, zeta potential values for silver nanoparticles were in the range of-5 ± 1 to-16 ± 1 mV. STEM images revealed the average particles sizes in the range from 10 to 15 nm, and 10 to 57 nm, for gold and silver nanoparticles respectively. The silver nanoparticles presented good antibacterial activity, inhibiting the growth of Staphylococcus aureus and Escherichia coli.
AB - In this work, the biosynthesis of gold and silver nanoparticles from a leaf extract of Parkinsonia florida (P. florida) is reported. The P. florida leaf extract was analyzed by a phytochemical screening, by measuring the DPPH radical scavenging activity, and by Fourier-transform infrared spectroscopy (FT-IR). The phytochemical screening results indicated that biomolecules like carbohydrates, phenols, proteins, aminoacids, saponins, and flavonoids present in P. florida leaf extract might have participated in the chemical reduction of the metallic salts and further colloidal stabilization. The FT-IR results from leaf extract functional groups support the role of surface modification with the presence of residues of phenols, proteins, aminoacids, saponins, and flavonoids. The formation of metallic nanoparticles was confirmed by optical absorption spectroscopy with characteristic absorption bands at 550 nm and 430 nm, for gold and silver nanoparticles, respectively. Zeta potential for gold nanoparticles presents negative values in the range of-10 ± 1 to-16 ± 1 mV, depending on the amount of leaf extract used during the synthesis reaction. Similarly, zeta potential values for silver nanoparticles were in the range of-5 ± 1 to-16 ± 1 mV. STEM images revealed the average particles sizes in the range from 10 to 15 nm, and 10 to 57 nm, for gold and silver nanoparticles respectively. The silver nanoparticles presented good antibacterial activity, inhibiting the growth of Staphylococcus aureus and Escherichia coli.
UR - http://www.scopus.com/inward/record.url?scp=85073707259&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073707259&partnerID=8YFLogxK
U2 - 10.1088/2053-1591/ab2d8e
DO - 10.1088/2053-1591/ab2d8e
M3 - Article
AN - SCOPUS:85073707259
SN - 2053-1591
VL - 6
JO - Materials Research Express
JF - Materials Research Express
IS - 9
M1 - 095025
ER -