Abstract
Queuosine is a hypermodified nucleoside present in the wobble position of tRNAs with a 5′-GUN-3′ sequence in their anticodon (His, Asp, Asn, and Tyr). The 7-deazapurine core of the base is synthesized de novo in prokaryotes from guanosine 5′-triphosphate in a series of eight sequential enzymatic transformations, the final three occurring on tRNA. Epoxyqueuosine reductase (QueG) catalyzes the final step in the pathway, which entails the two-electron reduction of epoxyqueuosine to form queuosine. Biochemical analyses reveal that this enzyme requires cobalamin and two [4Fe-4S] clusters for catalysis. Spectroscopic studies show that the cobalamin appears to bind in a base-off conformation, whereby the dimethylbenzimidazole moiety of the cofactor is removed from the coordination sphere of the cobalt but not replaced by an imidazole side chain, which is a hallmark of many cobalamin-dependent enzymes. The bioinformatically identified residues are shown to have a role in modulating the primary coordination sphere of cobalamin. These studies provide the first demonstration of the cofactor requirements for QueG.
Original language | English (US) |
---|---|
Pages (from-to) | 4927-4935 |
Number of pages | 9 |
Journal | Biochemistry |
Volume | 54 |
Issue number | 31 |
DOIs | |
State | Published - Aug 11 2015 |
ASJC Scopus subject areas
- Biochemistry