Binarized collaborative filtering with distilling graph convolutional networks

Haoyu Wang, Defu Lian, Yong Ge

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations

Abstract

The efficiency of top-K item recommendation based on implicit feedback are vital to recommender systems in real world, but it is very challenging due to the lack of negative samples and the large number of candidate items. To address the challenges, we firstly introduce an improved Graph Convolutional Network (GCN) model with high-order feature interaction considered. Then we distill the ranking information derived from GCN into binarized collaborative filtering, which makes use of binary representation to improve the efficiency of online recommendation. However, binary codes are not only hard to be optimized but also likely to incur the loss of information during the training processing. Therefore, we propose a novel framework to convert the binary constrained optimization problem into an equivalent continuous optimization problem with a stochastic penalty. The binarized collaborative filtering model is then easily optimized by many popular solvers like SGD and Adam. The proposed algorithm is finally evaluated on three real-world datasets and shown the superiority to the competing baselines.

Original languageEnglish (US)
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4802-4808
Number of pages7
ISBN (Electronic)9780999241141
StatePublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: Aug 10 2019Aug 16 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period8/10/198/16/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Binarized collaborative filtering with distilling graph convolutional networks'. Together they form a unique fingerprint.

Cite this