TY - JOUR
T1 - Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells
AU - Powell, A. A.
AU - LaRue, J. M.
AU - Batta, A. K.
AU - Martinez, J. D.
PY - 2001/6/1
Y1 - 2001/6/1
N2 - Faecal bile acids have long been associated with colon cancer; highly hydrophobic bile acids, which induce apoptosis, have been implicated in the promotion of colon tumours. The moderately hydrophobic chemopreventive agent ursodeoxycholic acid (UDCA) does not induce apoptosis; rather, it causes colon-derived tumour cells to arrest their growth. To investigate the relationship between bile acid hydrophobicity and biological activity we examined 26 bile acids for their capacity to induce apoptosis or alter cell growth. We found that the rapidity with which, and the degree to which, bile acids could induce apoptosis or growth arrest was correlated with their relative hydrophobicities. Of the bile acids tested, only deoxycholic acid (DCA) and chenodeoxycholic acid, the most hydrophobic bile acids tested, could induce apoptosis in less than h in the human colon cancer cell line HCT116. The moderately hydrophobic bile acids hyoDCA, lagoDCA, norDCA, homoUDCA and isoUDCA induced growth arrest at 12 h but longer incubations resulted in apoptosis. Conjugation of glycine or taurine to the bile acids decreased relative hydrophobicity and eliminated biological activity in our assays. In addition, we tested a subset of these bile acids for their ability to translocate across cell membranes. When 14C-labelled and 3H-labelled DCA, UDCA and lagoDCA were added to cell cultures, we found only minimal uptake by colon cells, whereas hepatocytes had considerably higher absorption. These experiments suggest that hydrophobicity is an important determinant of the biological activity exhibited by bile acids but that under our conditions these activities are not correlated with cellular uptake.
AB - Faecal bile acids have long been associated with colon cancer; highly hydrophobic bile acids, which induce apoptosis, have been implicated in the promotion of colon tumours. The moderately hydrophobic chemopreventive agent ursodeoxycholic acid (UDCA) does not induce apoptosis; rather, it causes colon-derived tumour cells to arrest their growth. To investigate the relationship between bile acid hydrophobicity and biological activity we examined 26 bile acids for their capacity to induce apoptosis or alter cell growth. We found that the rapidity with which, and the degree to which, bile acids could induce apoptosis or growth arrest was correlated with their relative hydrophobicities. Of the bile acids tested, only deoxycholic acid (DCA) and chenodeoxycholic acid, the most hydrophobic bile acids tested, could induce apoptosis in less than h in the human colon cancer cell line HCT116. The moderately hydrophobic bile acids hyoDCA, lagoDCA, norDCA, homoUDCA and isoUDCA induced growth arrest at 12 h but longer incubations resulted in apoptosis. Conjugation of glycine or taurine to the bile acids decreased relative hydrophobicity and eliminated biological activity in our assays. In addition, we tested a subset of these bile acids for their ability to translocate across cell membranes. When 14C-labelled and 3H-labelled DCA, UDCA and lagoDCA were added to cell cultures, we found only minimal uptake by colon cells, whereas hepatocytes had considerably higher absorption. These experiments suggest that hydrophobicity is an important determinant of the biological activity exhibited by bile acids but that under our conditions these activities are not correlated with cellular uptake.
KW - Cellular uptake
KW - Colon cancer
KW - Deoxycholic acid
KW - Signal transduction pathways
KW - Ursodeoxycholic acid
UR - http://www.scopus.com/inward/record.url?scp=0035366705&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035366705&partnerID=8YFLogxK
U2 - 10.1042/0264-6021:3560481
DO - 10.1042/0264-6021:3560481
M3 - Article
C2 - 11368775
AN - SCOPUS:0035366705
SN - 0264-6021
VL - 356
SP - 481
EP - 486
JO - Biochemical Journal
JF - Biochemical Journal
IS - 2
ER -