Better-than-KL PAC-Bayes Bounds

Ilja Kuzborskij, Kwang Sung Jun, Yulian Wu, Kyoungseok Jang, Francesco Orabona

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Let f(θ, X1), ..., f(θ, Xn) be a sequence of random elements, where f is a fixed scalar function, X1, ..., Xn are independent random variables (data), and θ is a random parameter distributed according to some data-dependent posterior distribution Pn. In this paper, we consider the problem of proving concentration inequalities to estimate the mean of the sequence. An example of such a problem is the estimation of the generalization error of some predictor trained by a stochastic algorithm, such as a neural network, where f is a loss function. Classically, this problem is approached through a PAC-Bayes analysis where, in addition to the posterior, we choose a prior distribution which captures our belief about the inductive bias of the learning problem. Then, the key quantity in PAC-Bayes concentration bounds is a divergence that captures the complexity of the learning problem where the de facto standard choice is the Kullback-Leibler (KL) divergence. However, the tightness of this choice has rarely been questioned. In this paper, we challenge the tightness of the KL-divergence-based bounds by showing that it is possible to achieve a strictly tighter bound. In particular, we demonstrate new high-probability PAC-Bayes bounds with a novel and better-than-KL divergence that is inspired by Zhang et al. (2022). Our proof is inspired by recent advances in regret analysis of gambling algorithms, and its use to derive concentration inequalities. Our result is first-of-its-kind in that existing PAC-Bayes bounds with non-KL divergences are not known to be strictly better than KL. Thus, we believe our work marks the first step towards identifying optimal rates of PAC-Bayes bounds.

Original languageEnglish (US)
Pages (from-to)3325-3352
Number of pages28
JournalProceedings of Machine Learning Research
Volume247
StatePublished - 2024
Event37th Annual Conference on Learning Theory, COLT 2024 - Edmonton, Canada
Duration: Jun 30 2024Jul 3 2024

Keywords

  • Concentration inequalities
  • PAC-Bayes
  • change-of-measure
  • coin-betting
  • confidence sequences

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Better-than-KL PAC-Bayes Bounds'. Together they form a unique fingerprint.

Cite this