Band structure mapping of bilayer graphene via quasiparticle scattering

Matthew Yankowitz, Joel I.Jan Wang, Suchun Li, A. Glen Birdwell, Yu An Chen, Kenji Watanabe, Takashi Taniguchi, Su Ying Quek, Pablo Jarillo-Herrero, Brian J. LeRoy

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0 = 3.1 eV, γ1 = 0.39 eV, and γ4 = 0.22 eV.

Original languageEnglish (US)
Article number092503
JournalAPL Materials
Volume2
Issue number9
DOIs
StatePublished - Sep 2014

ASJC Scopus subject areas

  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Band structure mapping of bilayer graphene via quasiparticle scattering'. Together they form a unique fingerprint.

Cite this