Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose

Andre I. Sarabia-Sainz, Gabriela Ramos-Clamont, Joy Winzerling, Luz Vazquez-Moreno

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Recently, glyco-therapy is proposed to prevent the interaction of bacterial lectins with host ligands (glycoconjugates). This interaction represents the first step in infection. Neoglycans referred to as PSA-Lac (PSA-Glu (β1-4) Gal) were obtained by conjugation of porcine serum albumin (PSA) with lactose at 80 °C, 100 °C and 120 °C. Characterization studies of the products showed that PSA could contain 1, 38 or 41 added lactoses, depending on the reaction temperature. These neoglycans were approximately 10 times more glycated than PSA-Lac obtained in previous work. Lactose conjugation occurred only at lysines and PSA-Lac contained terminal galactoses as confirmed by Ricinus communis lectin recognition. Furthermore, Escherichia coli K88+, K88ab, K88ac and K88ad adhesins showed affinity toward all PSA-Lac neoglycans, and the most effective was the PSA-Lac obtained after 100 °C treatment. In vitro, this neoglycan partially inhibited the adhesion of E. coli K88+ to piglet mucin (its natural ligand). These results provide support for the hypothesis that glycated proteins can be used as an alternative for bioactive compounds for disease prevention.

Original languageEnglish (US)
Pages (from-to)95-100
Number of pages6
JournalActa biochimica Polonica
Volume58
Issue number1
StatePublished - 2011

Keywords

  • Bacterial recognition
  • E. coli K88 adhesion
  • Glycation of serum albumin
  • Neoglycans

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose'. Together they form a unique fingerprint.

Cite this