TY - GEN
T1 - Autonomic proactive runtime partitioning strategies for SAMR applications
AU - Zhang, Yeliang
AU - Yang, Jingmei
AU - Hariri, Salim
AU - Chandra, Sumir
AU - Parashar, Manish
PY - 2004
Y1 - 2004
N2 - Dynamic structured adaptive mesh refinement (SAMR) techniques along with the emergence of the computational Grid offer the potential for realistic scientific and engineering simulations of complex physical phenomena. However, the inherent dynamic nature of SAMR applications coupled with the heterogeneity and dynamism of the underlying Grid environment present significant research challenges. This paper presents proactive runtime partitioning strategies based on performance prediction functions that are experimentally formulated in terms of system parameters such as CPU load and available memory. These proactive partitioning strategies form a part of the GridARM autonomic framework which enables self-managing, self-adapting, and self-optimizing SAMR applications on the Grid. Experimental evaluation of the proactive schemes using the 3-D Richtmyer-Meshkov compressible fluid dynamics kernel for different system configurations and workloads demonstrates the improvement in overall runtime performance.
AB - Dynamic structured adaptive mesh refinement (SAMR) techniques along with the emergence of the computational Grid offer the potential for realistic scientific and engineering simulations of complex physical phenomena. However, the inherent dynamic nature of SAMR applications coupled with the heterogeneity and dynamism of the underlying Grid environment present significant research challenges. This paper presents proactive runtime partitioning strategies based on performance prediction functions that are experimentally formulated in terms of system parameters such as CPU load and available memory. These proactive partitioning strategies form a part of the GridARM autonomic framework which enables self-managing, self-adapting, and self-optimizing SAMR applications on the Grid. Experimental evaluation of the proactive schemes using the 3-D Richtmyer-Meshkov compressible fluid dynamics kernel for different system configurations and workloads demonstrates the improvement in overall runtime performance.
UR - http://www.scopus.com/inward/record.url?scp=12444256367&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12444256367&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:12444256367
SN - 0769521320
SN - 9780769521329
T3 - Proceedings - International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM)
SP - 2783
EP - 2790
BT - Proceedings - 18th International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM)
T2 - Proceedings - 18th International Parallel and Distributed Processing Symposium, IPDPS 2004 (Abstracts and CD-ROM)
Y2 - 26 April 2004 through 30 April 2004
ER -