TY - GEN
T1 - Auditing black-box models for indirect influence
AU - Adler, Philip
AU - Falk, Casey
AU - Friedler, Sorelle A.
AU - Rybeck, Gabriel
AU - Scheidegger, Carlos
AU - Smith, Brandon
AU - Venkatasubramanian, Suresh
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/7/2
Y1 - 2016/7/2
N2 - Data-Trained predictive models see widespread use, but for the most part they are used as black boxes which output a prediction or score. It is therefore hard to acquire a deeper understanding of model behavior, and in particular how different features influence the model prediction. This is important when interpreting the behavior of complex models, or asserting that certain problematic attributes (like race or gender) are not unduly influencing decisions. In this paper, we present a technique for auditing black-box models, which lets us study the extent to which existing models take advantage of particular features in the dataset, without knowing how the models work. Our work focuses on the problem of indirect influence: how some features might indirectly influence outcomes via other, related features. As a result, we can find attribute influences even in cases where, upon further direct examination of the model, the attribute is not referred to by the model at all. Our approach does not require the black-box model to be retrained. This is important if (for example) the model is only accessible via an API, and contrasts our work with other methods that investigate feature influence like feature selection. We present experimental evidence for the effectiveness of our procedure using a variety of publicly available datasets and models. We also validate our procedure using techniques from interpretable learning and feature selection, as well as against other black-box auditing procedures.
AB - Data-Trained predictive models see widespread use, but for the most part they are used as black boxes which output a prediction or score. It is therefore hard to acquire a deeper understanding of model behavior, and in particular how different features influence the model prediction. This is important when interpreting the behavior of complex models, or asserting that certain problematic attributes (like race or gender) are not unduly influencing decisions. In this paper, we present a technique for auditing black-box models, which lets us study the extent to which existing models take advantage of particular features in the dataset, without knowing how the models work. Our work focuses on the problem of indirect influence: how some features might indirectly influence outcomes via other, related features. As a result, we can find attribute influences even in cases where, upon further direct examination of the model, the attribute is not referred to by the model at all. Our approach does not require the black-box model to be retrained. This is important if (for example) the model is only accessible via an API, and contrasts our work with other methods that investigate feature influence like feature selection. We present experimental evidence for the effectiveness of our procedure using a variety of publicly available datasets and models. We also validate our procedure using techniques from interpretable learning and feature selection, as well as against other black-box auditing procedures.
UR - http://www.scopus.com/inward/record.url?scp=85014529607&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014529607&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2016.158
DO - 10.1109/ICDM.2016.158
M3 - Conference contribution
AN - SCOPUS:85014529607
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 1
EP - 10
BT - Proceedings - 16th IEEE International Conference on Data Mining, ICDM 2016
A2 - Bonchi, Francesco
A2 - Domingo-Ferrer, Josep
A2 - Baeza-Yates, Ricardo
A2 - Zhou, Zhi-Hua
A2 - Wu, Xindong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE International Conference on Data Mining, ICDM 2016
Y2 - 12 December 2016 through 15 December 2016
ER -