Asteroid precision landing via Multiple Sliding Surfaces Guidance techniques

Roberto Furfaro, Dario Cersosimo, Daniel R. Wibben

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Autonomous close proximity operations (hovering, landing) in the low-gravity environment exhibited by asteroids are particularly challenging. A novel nonlinear landing guidance scheme has been developed for spacecrafts that are required to execute autonomous closed-loop guidance to a designated point on the asteroid surface. Based on High Order Sliding Mode control theory, the proposed Multiple Sliding Surface Guidance (MSSG) algorithm has been designed to take advantage of the ability of the system to reach the sliding surface in a finite time. High control activity typical of sliding control design is avoided resulting in a guidance law that is robust against unmodeled yet bounded perturbations. The proposed MSSG does not require any off-line trajectory generation and therefore it is flexible enough to target a large variety of points on the surface without the need of ground-based trajectory analysis. The global stability of the proposed guidance algorithm is proven using a Lyapunov-based approach. The behavior of the MSSG-based class of asteroid landing trajectories is investigated via a parametric analysis and a full set of Monte Carlo simulations in realistic landing scenarios. Based on such results, the MSSG algorithm is demonstrated to be very accurate and flexible. The proposed scheme is suitable for onboard implementation and deployment for asteroid landing and close proximity operations.

Original languageEnglish (US)
Title of host publicationASTRODYNAMICS 2011 - Advances in the Astronautical Sciences
Subtitle of host publicationProceedings of the AAS/AIAA Astrodynamics Specialist Conference
Pages3733-3752
Number of pages20
StatePublished - 2012
Event2011 AAS/AIAA Astrodynamics Specialist Conference, ASTRODYNAMICS 2011 - Girdwood, AK, United States
Duration: Jul 31 2011Aug 4 2011

Publication series

NameAdvances in the Astronautical Sciences
Volume142
ISSN (Print)0065-3438

Other

Other2011 AAS/AIAA Astrodynamics Specialist Conference, ASTRODYNAMICS 2011
Country/TerritoryUnited States
CityGirdwood, AK
Period7/31/118/4/11

ASJC Scopus subject areas

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Asteroid precision landing via Multiple Sliding Surfaces Guidance techniques'. Together they form a unique fingerprint.

Cite this