TY - JOUR
T1 - Assessment of stereoselectivity of trimethylphenylalanine analogues of δ-opioid [D-Pen2,D-Pen5]-enkephalin
AU - Witt, Ken A.
AU - Slate, Cheryl A.
AU - Egleton, Richard D.
AU - Huber, Jason D.
AU - Yamamura, Henry I.
AU - Hruby, Victor J.
AU - Davis, Thomas P.
PY - 2000
Y1 - 2000
N2 - [D-Pen2,D-Pen5]-Enkephalin (DPDPE) is an enzymatically stable δ- opioid receptor-selective peptide, which was modified by the trimethylation of the Phe4 residue to give β-methyl-2',6'-dimethylphenylalanine (TMP), resulting in four conformations: (2S,3S)-β-Phe-DPDPE, (2R,3R)-β-Phe-DPDPE, (2R,3S)-β-Phe-DPDPE, and (2S,3R)-β-Phe-DPDPE. Synthesis was by solid-phase techniques using enantiomerically pure amino acids to give the four optically pure diastereoisomer peptides. The potency and selectivity (δ- versus μ- opioid receptor) were evaluated by radioreceptor binding in rat brain, with a μ/δ ratio decrease for all TMP conformations, compared with the parent compound (DPDPE). Octanol/buffer distribution analysis showed enhanced lipophilicity of all TMP forms, with a sixfold enhancement associated with (2S,3S)-TMP. In situ vascular perfusion in anesthetized rats showed a 1.6- fold (p < 0.01) increase in the ratio of brain uptake for (2S,3S)-TMP and a 1.5-fold (p < 0.01) decrease in uptake for (2R,3R)-TMP. Saturability of (2S,3S)-TMP was shown (p < 0.01) against 100 μM unlabeled DPDPE, showing a shared nondiffusionary transport system. P-glycoprotein affinity was shown in situ for the parent and (2S,3S)-TMP (p < 0.01). Protein binding capacity of the TMP compounds in rat plasma and in situ mammalian bovine serum albumin- Ringer showed (2R,3S)-TMP and (2S,3R)-TMP with the lowest degree of protein binding (p < 0.01), and (2S,3S)-TMP and (2R,3R)-TMP with comparable affinities to DPDPE. Analgesia, via intravenous administration, showed significantly reduced (p < 0.01) end effect and time course for (2R,3R)-TMP, (2R,3S)-TMP, and (2S,3R)-TMP as compared with DPDPE. These results demonstrate that topographical modification in a conformationally restricted peptide can significantly modulate potency and receptor selectivity, binding capacity, enzymatic stability, lipophilicity, P-glycoprotein affinity, and blood-brain barrier permeability, resulting in a change of bioavailability, and thereby provides insight for future peptide drug design.
AB - [D-Pen2,D-Pen5]-Enkephalin (DPDPE) is an enzymatically stable δ- opioid receptor-selective peptide, which was modified by the trimethylation of the Phe4 residue to give β-methyl-2',6'-dimethylphenylalanine (TMP), resulting in four conformations: (2S,3S)-β-Phe-DPDPE, (2R,3R)-β-Phe-DPDPE, (2R,3S)-β-Phe-DPDPE, and (2S,3R)-β-Phe-DPDPE. Synthesis was by solid-phase techniques using enantiomerically pure amino acids to give the four optically pure diastereoisomer peptides. The potency and selectivity (δ- versus μ- opioid receptor) were evaluated by radioreceptor binding in rat brain, with a μ/δ ratio decrease for all TMP conformations, compared with the parent compound (DPDPE). Octanol/buffer distribution analysis showed enhanced lipophilicity of all TMP forms, with a sixfold enhancement associated with (2S,3S)-TMP. In situ vascular perfusion in anesthetized rats showed a 1.6- fold (p < 0.01) increase in the ratio of brain uptake for (2S,3S)-TMP and a 1.5-fold (p < 0.01) decrease in uptake for (2R,3R)-TMP. Saturability of (2S,3S)-TMP was shown (p < 0.01) against 100 μM unlabeled DPDPE, showing a shared nondiffusionary transport system. P-glycoprotein affinity was shown in situ for the parent and (2S,3S)-TMP (p < 0.01). Protein binding capacity of the TMP compounds in rat plasma and in situ mammalian bovine serum albumin- Ringer showed (2R,3S)-TMP and (2S,3R)-TMP with the lowest degree of protein binding (p < 0.01), and (2S,3S)-TMP and (2R,3R)-TMP with comparable affinities to DPDPE. Analgesia, via intravenous administration, showed significantly reduced (p < 0.01) end effect and time course for (2R,3R)-TMP, (2R,3S)-TMP, and (2S,3R)-TMP as compared with DPDPE. These results demonstrate that topographical modification in a conformationally restricted peptide can significantly modulate potency and receptor selectivity, binding capacity, enzymatic stability, lipophilicity, P-glycoprotein affinity, and blood-brain barrier permeability, resulting in a change of bioavailability, and thereby provides insight for future peptide drug design.
KW - Analgesia
KW - Stereoselectivity
KW - Trimethylphenyl-alanine
KW - [D-Pen,D-Pen]-Enkephalin
KW - δ-Opioid receptor
UR - http://www.scopus.com/inward/record.url?scp=0034126585&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034126585&partnerID=8YFLogxK
U2 - 10.1046/j.1471-4159.2000.0750424.x
DO - 10.1046/j.1471-4159.2000.0750424.x
M3 - Article
C2 - 10854288
AN - SCOPUS:0034126585
SN - 0022-3042
VL - 75
SP - 424
EP - 435
JO - Journal of neurochemistry
JF - Journal of neurochemistry
IS - 1
ER -