TY - JOUR
T1 - Assembly of vaccinia virus
T2 - The second wrapping cisterna is derived from the trans Golgi network
AU - Schmelz, M.
AU - Sodeik, B.
AU - Ericsson, M.
AU - Wolffe, E. J.
AU - Shida, H.
AU - Hiller, G.
AU - Griffiths, G.
PY - 1994
Y1 - 1994
N2 - During the assembly of vaccinia virus, the intracellular mature virus becomes enwrapped by a cellular cisterna to form the intracellular enveloped virus (IEV), the precursor of the extracellular enveloped virus (EEV). In this study, we have characterized the origin of this wrapping cisterna by electron microscopic immunocytochemistry using lectins, antibodies against endocytic organelles, and recombinant vaccinia viruses expressing proteins which behave as Golgi resident proteins. No labelling for endocytic marker proteins could be detected on the wrapping membrane. However, the wrapping membrane labelled significantly for a trans Golgi network (TGN) marker protein. The recycling pathway from endosomes to the TGN appears to be greatly increased following vaccinia virus infection, since significant amounts of endocytic fluid-phase tracers were found in the lumen of the TGN, Golgi complex, and the wrapping cisternae. Using immunoelectron microscopy, we localized the vaccinia virus membrane proteins VV-p37, VV-p42, VV-p21, and VV-hemagglutinin (VV-HA) in large amounts in the wrapping cisternae, in the outer membranes of the IEV, and in the outermost membrane of the EEV. The bulk of the cellular VV-p37, VV-p21, and VV-p42 were in the TGN, whereas VV- HA was also found in large amounts on the plasma membrane and in endosomes. Collectively, these data argue that the TGN becomes enriched in vaccinia virus membrane proteins that facilitate the wrapping event responsible for the formation of the IEV.
AB - During the assembly of vaccinia virus, the intracellular mature virus becomes enwrapped by a cellular cisterna to form the intracellular enveloped virus (IEV), the precursor of the extracellular enveloped virus (EEV). In this study, we have characterized the origin of this wrapping cisterna by electron microscopic immunocytochemistry using lectins, antibodies against endocytic organelles, and recombinant vaccinia viruses expressing proteins which behave as Golgi resident proteins. No labelling for endocytic marker proteins could be detected on the wrapping membrane. However, the wrapping membrane labelled significantly for a trans Golgi network (TGN) marker protein. The recycling pathway from endosomes to the TGN appears to be greatly increased following vaccinia virus infection, since significant amounts of endocytic fluid-phase tracers were found in the lumen of the TGN, Golgi complex, and the wrapping cisternae. Using immunoelectron microscopy, we localized the vaccinia virus membrane proteins VV-p37, VV-p42, VV-p21, and VV-hemagglutinin (VV-HA) in large amounts in the wrapping cisternae, in the outer membranes of the IEV, and in the outermost membrane of the EEV. The bulk of the cellular VV-p37, VV-p21, and VV-p42 were in the TGN, whereas VV- HA was also found in large amounts on the plasma membrane and in endosomes. Collectively, these data argue that the TGN becomes enriched in vaccinia virus membrane proteins that facilitate the wrapping event responsible for the formation of the IEV.
UR - http://www.scopus.com/inward/record.url?scp=0028097957&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028097957&partnerID=8YFLogxK
U2 - 10.1128/jvi.68.1.130-147.1994
DO - 10.1128/jvi.68.1.130-147.1994
M3 - Article
C2 - 8254722
AN - SCOPUS:0028097957
SN - 0022-538X
VL - 68
SP - 130
EP - 147
JO - Journal of Virology
JF - Journal of Virology
IS - 1
ER -