TY - JOUR
T1 - Aromatic Stabilization and Hybridization Trends in Photoelectron Imaging of Heterocyclic Radicals and Anions
AU - Culberson, Lori M.
AU - Blackstone, Christopher C.
AU - Wallace, Adam A.
AU - Sanov, Andrei
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/9/24
Y1 - 2015/9/24
N2 - We examine the photoelectron spectra and laboratory-frame angular distributions in the photodetachment of furanide (C4H3O-), thiophenide (C4H3S-), and thiazolide (C3H2NS-) and compare the results to the previously reported studies of pyridinide (C5H4N-) and oxazolide (C3H2NO-). Using the mixed s-p model for the angular distributions, the results are interpreted in terms of the effective fractional p character of the highest-occupied molecular orbitals of these heterocyclic anions, revealing trends related to the aromaticity. We conclude that aromatic stabilization across a series of systems may be tracked using the photoelectron angular distributions. In addition, we report an improved (higher-precision) electron affinity (EA) for the thiophenyl radical, EA(•C4H3S) = 2.089(8) eV. The EA of thiazolyl falls within the 2.5(1) eV range, but it is not clear if this determination corresponds to the 2- or 5-cyclic species or the 2-ring-open isomer. These results are analyzed in conjunction with the properties of other heterocyclic radicals (pyridinyl, furanyl, and oxazolyl) and interpreted in terms of the C-H bond dissociation energies (BDEs) of the corresponding closed-shell molecules. The BDEs of all five-membered-ring heterocyclics studied fall within the 116-120 kcal/mol range, contrasting the lower BDE = 110.4(2.0) kcal/mol of the more aromatic six-membered-ring pyridine. The observed aromaticity trends are consistent with the findings derived from the anion photoelectron angular distributions.
AB - We examine the photoelectron spectra and laboratory-frame angular distributions in the photodetachment of furanide (C4H3O-), thiophenide (C4H3S-), and thiazolide (C3H2NS-) and compare the results to the previously reported studies of pyridinide (C5H4N-) and oxazolide (C3H2NO-). Using the mixed s-p model for the angular distributions, the results are interpreted in terms of the effective fractional p character of the highest-occupied molecular orbitals of these heterocyclic anions, revealing trends related to the aromaticity. We conclude that aromatic stabilization across a series of systems may be tracked using the photoelectron angular distributions. In addition, we report an improved (higher-precision) electron affinity (EA) for the thiophenyl radical, EA(•C4H3S) = 2.089(8) eV. The EA of thiazolyl falls within the 2.5(1) eV range, but it is not clear if this determination corresponds to the 2- or 5-cyclic species or the 2-ring-open isomer. These results are analyzed in conjunction with the properties of other heterocyclic radicals (pyridinyl, furanyl, and oxazolyl) and interpreted in terms of the C-H bond dissociation energies (BDEs) of the corresponding closed-shell molecules. The BDEs of all five-membered-ring heterocyclics studied fall within the 116-120 kcal/mol range, contrasting the lower BDE = 110.4(2.0) kcal/mol of the more aromatic six-membered-ring pyridine. The observed aromaticity trends are consistent with the findings derived from the anion photoelectron angular distributions.
UR - http://www.scopus.com/inward/record.url?scp=84942342599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942342599&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.5b04672
DO - 10.1021/acs.jpca.5b04672
M3 - Article
AN - SCOPUS:84942342599
SN - 1089-5639
VL - 119
SP - 9770
EP - 9777
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 38
ER -