Arecibo radar imagery of Mars: The major volcanic provinces

John K. Harmon, Michael C. Nolan, Diana I. Husmann, Bruce A. Campbell

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

We present Earth-based radar images of Mars obtained with the upgraded Arecibo S-band (λ=12.6 cm) radar during the 2005-2012 oppositions. The imaging was done using the same long-code delay-Doppler technique as for the earlier (pre-upgrade) imaging but at a much higher resolution (~3. km) and, for some regions, a more favorable sub-Earth latitude. This has enabled us to make a more detailed and complete mapping of depolarized radar reflectivity (a proxy for small-scale surface roughness) over the major volcanic provinces of Tharsis, Elysium, and Amazonis. We find that vast portions of these regions are covered by radar-bright lava flows exhibiting circular polarization ratios close to unity, a characteristic that is uncommon for terrestrial lavas and that is a likely indicator of multiple scattering from extremely blocky or otherwise highly disrupted flow surfaces. All of the major volcanoes have radar-bright features on their shields, although the brightness distribution on Olympus Mons is very patchy and the summit plateau of Pavonis Mons is entirely radar-dark. The older minor shields (paterae and tholi) are largely or entirely radar-dark, which is consistent with mantling by dust or pyroclastic material. Other prominent radar-dark features include: the " fan-shaped deposits" , possibly glacial, associated with the three major Tharsis Montes shields; various units of the Medusae Fossae Formation; a region south and west of Biblis Patera where " Stealth" deposits appear to obscure Tharsis flows; and a number of " dark-halo craters" with radar-absorbing ejecta blankets deposited atop surrounding bright flows. Several major bright features in Tharsis are associated with off-shield lava flows; these include the Olympus Mons basal plains, volcanic fields east and south of Pavonis Mons, the Daedalia Planum flows south of Arsia Mons, and a broad expanse of flows extending east from the Tharsis Montes to Echus Chasma. The radar-bright lava plains in Elysium are concentrated mainly in Cerberus and include the fluvio-volcanic channels of Athabasca Valles, Grjotá Valles, and Marte Valles, as well as an enigmatic region at the southern tip of the Cerberus basin. Some of the Cerberus bright features correspond to the distinctive " platy-ridged" flows identified in orbiter images. The radar-bright terrain in Amazonis Planitia comprises two distinct but contiguous sections: a northern section formed of lavas and sediments debouched from Marte Valles and a southern section whose volcanics may derive, in part, from local sources. This South Amazonis region shows perhaps the most complex radar-bright structure on Mars and includes features that correspond to platy-ridged flows similar to those in Cerberus.

Original languageEnglish (US)
Pages (from-to)990-1030
Number of pages41
JournalIcarus
Volume220
Issue number2
DOIs
StatePublished - Aug 2012
Externally publishedYes

Keywords

  • Mars
  • Mars, Surface
  • Radar observations

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Arecibo radar imagery of Mars: The major volcanic provinces'. Together they form a unique fingerprint.

Cite this