Are Massive Dense Clumps Truly Subvirial? A New Analysis Using Gould Belt Ammonia Data

Ayushi Singh, Christopher D. Matzner, Rachel K. Friesen, Peter G. Martin, Jaime E. Pineda, Erik Rosolowsky, Felipe Alves, Ana Chacón-Tanarro, Hope How Huan Chen, Michael Chun Yuan Chen, Spandan Choudhury, James Di Francesco, Jared Keown, Helen Kirk, Anna Punanova, Youngmin Seo, Yancy Shirley, Adam Ginsburg, Stella S.R. Offner, Héctor G. ArcePaola Caselli, Alyssa A. Goodman, Philip C. Myers, Elena Redaelli

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Dynamical studies of dense structures within molecular clouds often conclude that the most massive clumps contain too little kinetic energy for virial equilibrium, unless they are magnetized to an unexpected degree. This raises questions about how such a state might arise, and how it might persist long enough to represent the population of massive clumps. In an effort to reexamine the origins of this conclusion, we use ammonia line data from the Green Bank Ammonia Survey and Planck-calibrated dust emission data from Herschel to estimate the masses and kinetic and gravitational energies for dense clumps in the Gould Belt clouds. We show that several types of systematic error can enhance the appearance of low kinetic-to-gravitational energy ratios: insufficient removal of foreground and background material; ignoring the kinetic energy associated with velocity differences across a resolved cloud; and overcorrecting for stratification when evaluating the gravitational energy. Using an analysis designed to avoid these errors, we find that the most massive Gould Belt clumps harbor virial motions, rather than subvirial ones. As a by-product, we present a catalog of masses, energies, and virial energy ratios for 85 Gould Belt clumps.

Original languageEnglish (US)
Article number87
JournalAstrophysical Journal
Issue number1
StatePublished - Nov 20 2021

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Are Massive Dense Clumps Truly Subvirial? A New Analysis Using Gould Belt Ammonia Data'. Together they form a unique fingerprint.

Cite this