Abstract
Iso-branched wax compounds are well known in plants, but their biosynthetic pathways are still mostly unknown. It has been speculated that branched waxes are derived from branched-chain amino acid (BCAA) catabolism, but the evidence for this is very limited. Gas chromatography-flame ionisation detection (GC-FID) analysis revealed that mutations in two subunits of the branched-chain ketoacid dehydrogenase (BCKDH) complex, a key enzyme complex in the degradation of BCAAs, significantly decreased the amounts of branched wax compounds, indicating that BCAA degradation may be integral to the synthesis of iso-branched wax. Substrate feeding studies further revealed that the metabolic precursor of iso-branched wax compounds is isobutyric acid (iBA), which is derived from valine degradation in Arabidopsis. We also isolated a novel mutant and found that its branched wax deficient phenotype could not be rescued by iBA. Map-based cloning together with complementation analysis revealed that mutation in ACYL-ACTIVATING ENZYME 9 (AAE9) is responsible for this phenotype. Genetic and enzyme activity analysis demonstrated that AAE9 is located downstream of the BCAA degradation pathway, and that it activates iBA to isobutyryl-CoA for use on branched wax synthesis. Taken together, our study demonstrates that AAE9 is a key factor connecting BCAA catabolism with branched wax biosynthesis.
Original language | English (US) |
---|---|
Pages (from-to) | 2458-2470 |
Number of pages | 13 |
Journal | New Phytologist |
Volume | 233 |
Issue number | 6 |
DOIs | |
State | Published - Mar 2022 |
Keywords
- Arabidopsis
- acyl-activating enzyme
- branched-chain amino acid
- iso-branched wax
- isobutyric acid
ASJC Scopus subject areas
- Physiology
- Plant Science