Application of redox mediators to accelerate the transformation of reactive Azo dyes in anaerobic bioreactors

Frank P. Van Der Zee, Renske H.M. Bouwman, David P.B.T.B. Strik, Gatze Lettinga, Jim A. Field

Research output: Contribution to journalArticlepeer-review

186 Scopus citations


Azo dyes are nonspecifically reduced under anaerobic conditions but the slow rates at which reactive azo dyes are converted presents a serious problem for the application of anaerobic technology as a first stage in the complete biodegradation of these compounds. As quinones have been found to catalyze reductive transfers by acting as redox mediators, the application of anthraquinone-2,6-disulfonic acid (AQDS) during continuous anaerobic treatment of the reactive azo dye, Reactive Red 2 (RR2), was evaluated. A mixture of volatile fatty acids was used as the electron-donating primary substrate. Batch experiments demonstrated that AQDS could increase the first-order rate constant of RR2 reductive cleavage by one order of magnitude. In the continuous experiment, treatment of RR2 containing synthetic wastewater in a lab-scale upflow anaerobic sludge blanket (UASB) reactor yielded low dye removal eciencies (<30%). Consequently, severe toxicity problems occurred, eventually resulting in almost complete inhibition of the methanogenic activity. Addition of catalytic concentrations of AQDS (19 μM) to the reactor influent caused an immediate increase in the dye removal efficiency and recovery of biological activity. Ultimately, RR2 removal efficiency stabilized at 88%, and higher AQDS loads resulted in higher RR2 removal efficiencies (up to 98% at 155 μM AQDS). Examination of the RR2 decolorizing properties of dye-adapted reactor sludge and of nonadapted reactor seed sludge revealed that RR2 decolorization was principally a biologically driven transfer of reducing equivalents from endogenous and added substrates to the dye. Hydrogen, added in bulk, was clearly the preferred electron donor. Bacteria that couple dye decolorization to hydrogen oxidation were naturally present in seed sludge. However, enrichment was required for the utilization of electrons from volatile fatty acids for dye reduction. The stimulatory effect of AQDS on RR2 decolorization by AQDS-unadapted sludge was mainly due to assisting the electron transfer from endogenous substrates in the sludge to the dye. The stimulatory effect of AQDS on RR2 decolorization by sludge from the AQDS-exposed reactor was, in addition, strongly associated with the transfer of electrons from hydrogen and acetate to the dye, probably due to enrichment of specialized AQDS-reducing bacteria.

Original languageEnglish (US)
Pages (from-to)691-701
Number of pages11
JournalBiotechnology and Bioengineering
Issue number6
StatePublished - Dec 20 2001


  • Anaerobic granular sludge
  • Anthraquinone-2,6-disulfonic acid (AQDS)
  • Azo dye reduction
  • Reactive Red 2 (RR2)
  • Redox mediator
  • Upflow anaerobic sludge blanket (UASB) reactor

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Application of redox mediators to accelerate the transformation of reactive Azo dyes in anaerobic bioreactors'. Together they form a unique fingerprint.

Cite this