Abstract
The solutions of the Lorenz system are investigated by examination of their complex-time singularities. It is found that the location and type of singularity that occurs for complex time is critical in determining the behavior of the real-time solution. By direct expansion of the solution at a singularity its structure is determined. In general, the solutions are multiple valued in the neighborhood of a singularity; a property that is intimately related to the nonintegrability of the system. A numerical investigation is made of the analytic structure of solutions exhibiting turbulent bursts and undergoing period-doubling bifurcations.
Original language | English (US) |
---|---|
Pages (from-to) | 2157-2167 |
Number of pages | 11 |
Journal | Physical Review A |
Volume | 24 |
Issue number | 4 |
DOIs | |
State | Published - 1981 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics