Abstract
For a closed Riemannian manifold (M, g) we extend the definition of analytic and Reidemeister torsion associated to a unitary representation of π1(M) on a finite dimensional vector space to a representation on a A-Hilbert module W of finite type where A is a finite von Neumann algebra. If (M, W) is of determinant class we prove, generalizing the Cheeger-Müller theorem, that the analytic and Reidemeister torsion are equal. In particular, this proves the conjecture that for closed Riemannian manifolds with positive Novikov-Shubin invariants, the L2-analytic and L2-Reidemeister torsions are equal.
Original language | English (US) |
---|---|
Pages (from-to) | 751-859 |
Number of pages | 109 |
Journal | Geometric and Functional Analysis |
Volume | 6 |
Issue number | 5 |
DOIs | |
State | Published - 1996 |
ASJC Scopus subject areas
- Analysis
- Geometry and Topology