TY - JOUR
T1 - Analysis of protein covalent modification by xenobiotics using a covert oxidatively activated tag
T2 - Raloxifene proof-of-principle study
AU - Liu, Ju
AU - Li, Qian
AU - Yang, Xiaofeng
AU - Van Breemen, Richard B.
AU - Bolton, Judy L.
AU - Thatcher, Gregory R.J.
PY - 2005/9
Y1 - 2005/9
N2 - Numerous xenobiotics, including therapeutics agents, are substrates for bioactivation to electrophilic reactive intermediates that may covalently modify biomolecules. Selective estrogen receptor modulators (SERMs) are in clinical use for long-term therapy of postmenopausal syndromes and chemoprevention and provide a potential alternative for hormone replacement therapy (HRT). Raloxifene, in common with many SERMs and other xenobiotics, is a polyaromatic phenol that has been shown to be metabolically bioactivated to electrophilic and redox active quinoids. Nucleic acid and glutathione adduct formation have been reported, but little is known about protein covalent modification. A novel COATag (covert oxidatively activated tag) was synthesized in which raloxifene was linked to biotin. The COATag was reactive toward a model protein, human glutathione-S-transferase Pl-1, in the presence but not the absence of monooxygenase. The covalent modification of proteins in rat liver microsomal incubations was NADPH-dependent implicating cytochrome P450 oxidase. The COATag facilitated isolation and identification of covalently modified microsomal proteins: cytosolic glucose regulated protein (GRP78/BiP), three protein disulfide isomerases, and microsomal glutathione S-transferase 1. Oxidative metabolism of raloxifene produces reactive intermediates of sufficient lifetimes to covalently modify proteins in tissue microsomes, behavior anticipated for other polyaromatic phenol xenobiotics that can be tested by the COATag methodology. The combined use of a COATag with a simple biotin-linked electrophile (such as an iodoacetamide tag) is a new technique that allows quantification of protein covalent modification via alkylation vs oxidation in response to xenobiotic reactive intermediates. The identification of modified proteins is important for defining pathways that might lead alternatively to either cytotoxicity or cytoprotection.
AB - Numerous xenobiotics, including therapeutics agents, are substrates for bioactivation to electrophilic reactive intermediates that may covalently modify biomolecules. Selective estrogen receptor modulators (SERMs) are in clinical use for long-term therapy of postmenopausal syndromes and chemoprevention and provide a potential alternative for hormone replacement therapy (HRT). Raloxifene, in common with many SERMs and other xenobiotics, is a polyaromatic phenol that has been shown to be metabolically bioactivated to electrophilic and redox active quinoids. Nucleic acid and glutathione adduct formation have been reported, but little is known about protein covalent modification. A novel COATag (covert oxidatively activated tag) was synthesized in which raloxifene was linked to biotin. The COATag was reactive toward a model protein, human glutathione-S-transferase Pl-1, in the presence but not the absence of monooxygenase. The covalent modification of proteins in rat liver microsomal incubations was NADPH-dependent implicating cytochrome P450 oxidase. The COATag facilitated isolation and identification of covalently modified microsomal proteins: cytosolic glucose regulated protein (GRP78/BiP), three protein disulfide isomerases, and microsomal glutathione S-transferase 1. Oxidative metabolism of raloxifene produces reactive intermediates of sufficient lifetimes to covalently modify proteins in tissue microsomes, behavior anticipated for other polyaromatic phenol xenobiotics that can be tested by the COATag methodology. The combined use of a COATag with a simple biotin-linked electrophile (such as an iodoacetamide tag) is a new technique that allows quantification of protein covalent modification via alkylation vs oxidation in response to xenobiotic reactive intermediates. The identification of modified proteins is important for defining pathways that might lead alternatively to either cytotoxicity or cytoprotection.
UR - http://www.scopus.com/inward/record.url?scp=25444462779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25444462779&partnerID=8YFLogxK
U2 - 10.1021/tx0501738
DO - 10.1021/tx0501738
M3 - Article
C2 - 16167842
AN - SCOPUS:25444462779
SN - 0893-228X
VL - 18
SP - 1485
EP - 1496
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 9
ER -